【题目】在平面直角坐标系
中,曲线
上的动点
到点
的距离减去
到直线
的距离等于1.
(1)求曲线
的方程;
(2)若直线
与曲线
交于
,
两点,求证:直线
与直线
的倾斜角互补.
科目:高中数学 来源: 题型:
【题目】现有一长为100码,宽为80码,球门宽为8码的矩形足球运动场地,如图所示,其中
是足球场地边线所在的直线,球门
处于所在直线的正中间位置,足球运动员(将其看做点
)在运动场上观察球门的角
称为视角.
![]()
(1)当运动员带球沿着边线
奔跑时,设
到底线的距离为
码,试求当
为何值时
最大;
(2)理论研究和实践经验表明:张角
越大,射门命中率就越大.现假定运动员在球场都是沿着垂直于底线的方向向底线运球,运动到视角最大的位置即为最佳射门点,以
的中点为原点建立如图所示的直角坐标系,求在球场区域
内射门到球门
的最佳射门点的轨迹.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了纪念“一带一路”倡议提出五周年,某城市举办了一场知识竞赛,为了了解市民对“一带一路”知识的掌握情况,从回收的有效答卷中按青年组和老年组各随机抽取了40份答卷,发现成绩都在
内,现将成绩按区间
,
,
,
,
进行分组,绘制成如下的频率分布直方图.
![]()
青年组
![]()
中老年组
(1)利用直方图估计青年组的中位数和老年组的平均数;
(2)从青年组
,
的分数段中,按分层抽样的方法随机抽取5份答卷,再从中选出3份答卷对应的市民参加政府组织的座谈会,求选出的3位市民中有2位来自
分数段的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知一列非零向量
满足:
,
.
(1)写出数列
的通项公式;
(2)求出向量
与
的夹角
,并将
中所有与
平行的向量取出来,按原来的顺序排成一列,组成新的数列
,
,
为坐标原点,求点列
的坐标;
(3)令
(
),求
的极限点位置.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2018年9月,台风“山竹”在我国多个省市登陆,造成直接经济损失达52亿元.某青年志愿者组织调查了某地区的50个农户在该次台风中造成的直接经济损失,将收集的数据分成五组:
,
,
,
,
(单位:元),得到如图所示的频率分布直方图.
![]()
(1)试根据频率分布直方图估计该地区每个农户的平均损失(同一组中的数据用该组区间的中点值代表);
(2)台风后该青年志愿者与当地政府向社会发出倡议,为该地区的农户捐款帮扶,现从这50户并且损失超过4000元的农户中随机抽取2户进行重点帮扶,设抽出损失超过8000元的农户数为
,求
的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设
是圆
上的任意一点,
是过点
且与
轴垂直的直线,
是直线
与
轴的交点,点
在直线
上,且满足
.当点
在圆
上运动时,记点
的轨迹为曲线
.
(1)求曲线
的方程;
(2)已知点
,过
的直线
交曲线
于
两点,交直线
于点
.判定直线
的斜率是否依次构成等差数列?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角梯形
中,
,
,
,
为
的中点,如图
将
沿
折到
的位置,使
,点
在
上,且
,如图2.
![]()
求证:
平面
;
求二面角
的正切值;
在线段
上是否存在点
,使
平面
?若存在,确定
的位置,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com