【题目】(1)阅读以下案例,利用此案例的想法化简
.
案例:考察恒等式
左右两边
的系数.
因为右边
,
所以,右边
的系数为
,
而左边
的系数为
,
所以
=
.
(2)求证:
.
【答案】(1)
;(2)见解析.
【解析】
(1)考查恒等式(1+x)7=(1+x)3(x+1)4左右两边x3的系数可得;
(2)根据
,考查恒等式(1+x)2n=(1+x)n(x+1)n左右两边xn的系数.考查恒等式(1+x)2n﹣1=(1+x)n﹣1(x+1)n左右两边xn﹣1的系数,可得等式成立.
(1)考查恒等式(1+x)7=(1+x)3(x+1)4左右两边x3的系数,
因为右边(1+x)3(x+1)4=(
+
x+
x2+
x3)(
x4+
x3+
x2+
x+
),
所以,右边x3的系数为
=![]()
而左边x3的系数为:
,所以
.
(2)∵
,
![]()
![]()
.
考查恒等式(1+x)2n=(1+x)n(x+1)n左右两边xn的系数.
因为右边xn的系数为
=
,而左边的xn的系数为
.
所以
,同理可求得![]()
考查恒等式(1+x)2n﹣1=(1+x)n﹣1(x+1)n左右两边xn﹣1的系数,
因为右边(1+x)n﹣1(x+1)n=(
+
x+…+
xn﹣1)(
xn+
xn﹣1+…+
),
所以,右边的xn﹣1的系数为
=
,
而左边的xn﹣1的系数为
,所以
=
,
﹣
=
+2n
+
﹣![]()
=2n
+
=n(
+
)+
=n(
+
)+![]()
=n
+
=(n+1)
.
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,
平面
,且
,
,
,点G,H分别为边
,
的中点,点M是线段
上的动点.
![]()
(1)求证:
;
(2)若
,当三棱锥
的体积最大时,求点C到平面
的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正方体
的棱长为1,
为
的中点,
在侧面
上,有下列四个命题:
①若
,则
面积的最小值为
;
②平面
内存在与
平行的直线;
③过
作平面
,使得棱
,
,
在平面
的正投影的长度相等,则这样的平面
有4个;
④过
作面
与面
平行,则正方体
在面
的正投影面积为
.
则上述四个命题中,真命题的个数为( )
![]()
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在著名的汉诺塔问题中,有三根高度相同的柱子和一些大小及颜色各不相同的圆盘,三根柱子分别为起始柱、辅助柱及目标柱.已知起始柱上套有
个圆盘,较大的圆盘都在较小的圆盘下面.现把圆盘从起始柱全部移到目标柱上,规则如下:每次只能移动一个圆盘,且每次移动后,每根柱上较大的圆盘不能放在较小的圆盘上面,规定一个圆盘从任一根柱上移动到另一根柱上为一次移动.若将
个圆盘从起始柱移动到目标柱上最少需要移动的次数记为
,则
( )
![]()
A. 33B. 31C. 17D. 15
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的右焦点为
,
是椭圆
上一点,
轴,
.
(1)求椭圆
的标准方程;
(2)若直线
与椭圆
交于
、
两点,线段
的中点为
,
为坐标原点,且
,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,圆
的参数方程为
(
为参数),以直角坐标系的原点
为极点,
轴正半轴为极轴建立极坐标系.
(1)求圆
的极坐标方程;
(2)设曲线
的极坐标方程为
,曲线
的极坐标方程为
,求三条曲线
,
,
所围成图形的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在数列
中,
,且对任意
,
成等差数列,其公差为
.
(1)若
,求
的值;
(2)若
,证明
成等比数列(
);
(3)若对任意
,
成等比数列,其公比为
,设
,证明数列
是等差数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校针对校食堂饭菜质量开展问卷调查,提供满意与不满意两种回答,调查结果如下表(单位:人):
学生 | 高一 | 高二 | 高三 |
满意 | 500 | 600 | 800 |
不满意 | 300 | 200 | 400 |
(1)求从所有参与调查的人中任选1人是高三学生的概率;
(2)从参与调查的高三学生中,用分层抽样的方法抽取6人,在这6人中任意选取2人,求这两人对校食堂饭菜质量都满意的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com