数列
前
项和为
,已知
,且对任意正整数
,都有
,若
恒成立,则实数
的最小值为( )
A.
B.
C.
D.4
B
【解析】
试题分析:由am+n=am?an,分别令m和n等于1和1或2和1,由a1求出数列的各项,发现此数列是首项和公比都为
的等比数列,利用等比数列的前n项和的公式表示出Sn,而Sn<a恒成立即n趋于正无穷时,求出Sn的极限小于等于a,求出极限列出关于a的不等式,即可得到a的最小值.解:令m=1,n=1,得到a2=a12=
,同理令m=2,n=1,得到a3=
,所以此数列是首项为
,公比也为
的等比数列…Sn<a恒成立即n→+∞时,Sn的极限≤a,所以
,故答案为![]()
考点:等比数列
点评:此题考查了等比数列关系的确定,掌握不等式恒成立时所满足的条件,灵活运用等比数列的前n项和的公式及会进行极限的运算,是一道综合题.
科目:高中数学 来源: 题型:
(本小题满分14分)
设数列
的前
项和为
,对任意的正整数
,都有
成立,记
。
(Ⅰ)求数列
的通项公式;
(Ⅱ)记
,设数列
的前
项和为
,求证:对任意正整数
都有
;
(Ⅲ)设数列
的前
项和为
。已知正实数
满足:对任意正整数
恒成立,求
的最小值。
查看答案和解析>>
科目:高中数学 来源:2013-2014学年广东省佛山市高三第二次月考理科数学试卷(解析版) 题型:选择题
数列
前
项和为
,已知
,且对任意正整数
、
,都有
,若
恒成立则实数
的最小值为( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源:2011-2012学年北京市高三下学期开学检测理科数学试卷 题型:解答题
(本小题满分12分)
设等比数列
的前
项和为
,已知
N
).
(Ⅰ)求数列
的通项公式;
(Ⅱ)在
与
之间插入n个数,使这n+2个数组成公差为
的等差数列,求数列
的前
项和
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com