精英家教网 > 高中数学 > 题目详情
在直角坐标系xOy中,以O为极点,x轴为非负半轴为极轴建立极坐标系,设⊙C的极坐标方程为ρ=2sinθ,点P为⊙C上一动点,点M的极坐标为(4,
π2
)
,点Q为线段PM的中点.
(1)求点Q的轨迹C1的方程;
(2)试判定轨迹C1和⊙C的位置关系,并说明理由.
分析:(1)先确定⊙C的直角坐标方程,再利用点Q为线段PM的中点,求得坐标之间的关系,利用代入法,即可求得点Q的轨迹C1的方程;
(2)确定圆心坐标,利用两圆圆心距为等于两圆半径和,可得结论.
解答:解:(1)∵⊙C的极坐标方程为ρ=2sinθ,∴⊙C的直角坐标方程为x2+y2-2y=0,即x2+(y-1)2=1;
∵点M的极坐标为(4,
π
2
)
,∴直角坐标为(0,4)
设P(x0,y0),Q(x,y),则x02+(y0-1)2=1①
∵点Q为线段PM的中点,∴
x0=2x
y0=2y-4

代入①,可得点Q的轨迹C1的方程x2+(y-
5
2
2=
1
4

(2)x2+(y-1)2=1的圆心坐标为(0,1),半径为1;x2+(y-
5
2
2=
1
4
的圆心坐标为(0,
5
2
),半径为
1
2

∴两圆圆心距为
3
2
,等于两圆半径和,所以两圆外切.
点评:本题考查代入法求轨迹方程,考查圆与圆的位置关系,考查学生的计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在直角坐标系xOy中,椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1,F2.F2也是抛物线C2:y2=4x的焦点,点M为C1与C2在第一象限的交点,且|MF2|=
5
3

(Ⅰ)求C1的方程;
(Ⅱ)平面上的点N满足
MN
=
MF1
+
MF2
,直线l∥MN,且与C1交于A,B两点,若
OA
OB
=0
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,已知点P(2cosx+1,2cos2x+2)和点Q(cosx,-1),其中x∈[0,π].若向量
OP
OQ
垂直,求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,在直角坐标系xOy中,射线OA在第一象限,且与x轴的正半轴成定角60°,动点P在射线OA上运动,动点Q在y轴的正半轴上运动,△POQ的面积为2
3

(1)求线段PQ中点M的轨迹C的方程;
(2)R1,R2是曲线C上的动点,R1,R2到y轴的距离之和为1,设u为R1,R2到x轴的距离之积.问:是否存在最大的常数m,使u≥m恒成立?若存在,求出这个m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,已知圆M的方程为x2+y2-4xcosα-2ysinα+3cos2α=0(α为参数),直线l的参数方程为
x=tcosθ
y=1+tsinθ
(t
为参数)
(I)求圆M的圆心的轨迹C的参数方程,并说明它表示什么曲线;
(II)求直线l被轨迹C截得的最大弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率e=
2
2
,左右两个焦分别为F1,F2.过右焦点F2且与x轴垂直的直线与椭圆C相交M、N两点,且|MN|=2.
(1)求椭圆C的方程;
(2)设椭圆C的一个顶点为B(0,-b),是否存在直线l:y=x+m,使点B关于直线l 的对称点落在椭圆C上,若存在,求出直线l的方程,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案