【题目】已知函数
,(
).
(Ⅰ)若函数
有且只有一个零点,求实数
的取值范围;
(Ⅱ)设
,若
,若函数对
恒成立,求实数
的取值范围.(
是自然对数的底数,
)
【答案】(Ⅰ)
(Ⅱ)![]()
【解析】
(Ⅰ)首先确定函数定义域为
,求出导数;当
时,可知函数单调递增,根据
可知满足题意;当
时,可求得导函数的零点;当零点
可知满足题意;当
或
结合函数的单调性和零点存在性定理可判断出存在不止一个零点,不满足题意;综合上述情况得到结果;(Ⅱ)当
时,可知
,得到
,满足题意;当
时,根据
符号可知
单调递增,由零点存在性定理可验证出
,使得
,从而得到
在
上单调递减,则
,不满足题意,从而得到结果.
(Ⅰ)由题意得:
定义域为
,则![]()
①当
时,
恒成立
在
上单调递增
又
有唯一零点,即
满足题意
②当
时
当
时,
;当
时,![]()
即
在
上单调递减,在
上单调递增
![]()
⑴当
,即
时,
,
有唯一零点,满足题意
⑵当
,即
时,![]()
又
,且![]()
,使得
,不符合题意
⑶当
,即
时,![]()
![]()
设
,
,则![]()
在
上单调递增
,即![]()
又
,使得
,不符合题意
综上所述:
的取值范围为:![]()
(Ⅱ)由题意得:
,则
,![]()
①当
时,由
得:
恒成立
在
上单调递增 ![]()
即
满足题意
②当
时,
恒成立
在
上单调递增
又
,![]()
,使得![]()
当
时,
,即
在
上单调递减
,则
不符合题意
综上所述:
的取值范围为:![]()
科目:高中数学 来源: 题型:
【题目】设直线l的方程为(a﹣1)x+y+a+3=0,(a∈R).
(1)若直线l在两坐标轴上截距的绝对值相等,求直线l的方程;
(2)若直线l不经过第一象限,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“读书可以让人保持思想活跃,让人得到智慧启发,让人滋养浩然之气”,2018年第一期中国青年阅读指数数据显示,从供给的角度,文学阅读域是最多的,远远超过了其他阅读域的供给量.某校采用分层抽样的方法从1000名文科生和2000名理科生中抽取300名学生进行了在暑假阅读内容和阅读时间方面的调查,得到数据如表:
文学阅读人数 | 非文学阅读人数 | 调查人数 | |
理科生 | 130 | ||
文科生 | 45 | ||
合计 |
(1)先完成上面的表格,并判断能否有90%的把握认为学生所学文理与阅读内容有关?
(2从300名被调查的学生中,随机进取30名学生,整理其日平均阅读时间(单位:分钟)如表:
阅读时间 |
|
|
|
|
|
男生人数 | 2 | 4 | 3 | 5 | 2 |
女生人数 | 1 | 3 | 4 | 3 | 3 |
试估计这30名学生日阅读时间的平均值(同一组中的数据以这组数据所在区间中点的值作代表)
(3)从(2)中日均阅读时间不低于120分钟的学生中随机选取2人介绍阅读心得,求这两人都是女生的概率.
参考公式:
,其中
.
参考数据:
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥P﹣ABC中,PA⊥平面ABC,AB⊥BC,PA=AB,D为PB中点,PC=3PE.
![]()
(1)求证:平面ADE⊥平面PBC;
(2)在AC上是否存在一点M,使得MB∥平面ADE?若存在,请确定点M的位置,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知两点A(0,﹣1),B(0,1),直线PA,PB相交于点P,且它们的斜率之积是
,记点P轨迹为C.
(1)求曲线C的轨迹方程;
(2)直线l与曲线C交于M,N两点,若|AM|=|AN|,求直线l的斜率k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左、右焦点分别为
,离心率为
,直线
与
的两个交点间的距离为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)分别过
作
满足
,设
与
的上半部分分别交于
两点,求四边形
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大学餐饮中心为了了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:
喜欢甜品 | 不喜欢甜品 | 合计 | |
南方学生 | 60 | 20 | 80 |
北方学生 | 10 | 10 | 20 |
合计 | 70 | 30 | 100 |
根据表中数据,问是否有
的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;
已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.
附:
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线
的参数方程为
(其中
为参数)曲线
的普通方程为
,以坐标原点为极点,以
轴正半轴为极轴建立极坐标系.
(1)求曲线
和曲线
的极坐标方程;
(2)射线
:
依次与曲线
和曲线
交于
、
两点,射线
:
依次与曲线
和曲线
交于
、
两点,求
的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com