精英家教网 > 高中数学 > 题目详情
已知函数f(x)=(x2-2ax)ex,x∈R,a∈R.

(1)当a≥0时,f(x)是否存在最小值?若存在,请求出相应x的值;若不存在,请说明理由.

(2)当x∈[-2,]时,若f(x)的图象上存在两点M,N,使得直线MN⊥y轴,求实数a的取值范围.

解析:(1)∵f′(x)=(x2+2x-2ax-2a)ex,令f′(x)=0,即x2+2(1-a)x-2a=0,

解得x1=a-1,x2=a-1+.

∵a≥0,∴x1<-1,x2≥0.

当x<x1或x>x2时,f′(x)>0;当x1<x<x2时,f′(x)<0,

∴f(x)在(-∞,x1)和(x2,+∞)上单调递增,在(x1,x2)上单调递减.

∴f(x)在x1处取极大值,在x2处取得极小值.

又∵当x=0时,f(x)=0;

当x<0时,f(x)=x(x-2a)ex>0,

∴x∈(-∞,a-1-)时,f(x)∈(0,f(a-1-)).

x∈(a-1-,a-1+)时,

f(x)∈(f(a-1-),f(a-1+));

x∈(a-1+,+∞)时,f(x)∈(f(a-1+),+∞),

又f(a-1+)=(2-2)ea-1+≤0,

∴x=a-1+时,f(x)取得最小值.

(2)∵x∈[-2,]时f(x)的图象上存在两点M,N,使得直线MN⊥y轴,则x∈[-2,]时f(x)不是单调增函数,也不是单调减函数,

∴f′(x)=(x2+2x-2ax-2a)ex在x∈[-2,]上有正有负.

∴g(x)=x2+2x-2ax-2a在x∈[-2,]上有正有负.

而g(-1)=1-2+2a-2a=-1<0,

∴g(x)=x2+2x-2ax-2a在x∈[-2,]上有正有负的充要条件为

g(-2)g()<0或

由g(-2)g()<0,解得a>0或a<;

解得a不存在.

综上,a的取值范围是a>0或a<.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3x+5,(x≤0)
x+5,(0<x≤1)
-2x+8,(x>1)

求(1)f(
1
π
),f[f(-1)]
的值;
(2)若f(a)>2,则a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=
(1-3a)x+10ax≤7
ax-7x>7.
是定义域上的递减函数,则实数a的取值范围是(  )
A、(
1
3
,1)
B、(
1
3
1
2
]
C、(
1
3
6
11
]
D、[
6
11
,1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
|x-1|-a
1-x2
是奇函数.则实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x-2-x2x+2-x

(1)求f(x)的定义域与值域;
(2)判断f(x)的奇偶性并证明;
(3)研究f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x-1x+a
+ln(x+1)
,其中实数a≠1.
(1)若a=2,求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)若f(x)在x=1处取得极值,试讨论f(x)的单调性.

查看答案和解析>>

同步练习册答案