精英家教网 > 高中数学 > 题目详情
已知函数f(x)=㏒
1
2
(x2-ax-a)的值域为R,且f(x)在(-3,1-
3
)上是增函数,则a的取值范围是(  )
A、0≤a≤2
B、-
9
2
≤a≤-4
C、-4<a<0
D、a<0
分析:本题中函数f(x)=㏒
1
2
(x2-ax-a)的值域为R故内层函数的定义域不是全体实数,只有当a>0时,可由△≥0保障f(x)=㏒
1
2
(x2-ax-a)定义域不是全体实数,再结合f(x)在(-3,1-
3
)上是增函数,只须内层函数x2-ax-a在(-3,1-
3
)上是减函数,故解题思路明了.
解答:解:当a>0时,△=4a2+4a≥0,解得a≥0或a≤-1,
f(x)在(-3,1-
3
)上是增函数,
∴内层函数x2-ax-a在(-3,1-
3
)上是减函数
a
2
≥1-
3
,且(x2-ax-a)| x=1-
3
≥0.
即a≥2-2
3
,且a≤2
综上知 实数a的取值范围是0≤a≤2
故选A.
点评:本题考点是对数函数的值域与最值、对数函数的单调性与特殊点,考查对数函数的定义其定义域为全体实数的等价条件的理解,本题是一个易错题,应依据定义理清转化的依据.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案