解:(1)bn+1=an+1+2=(2an+2)+2=2(an+2)=2bn,
又b1=a1+2=2,
所以,数列{bn}是首项为2、公比为2的等比数列,
所以数列{bn}的通项公式为bn=2n.
(2)由(1)得an=2n﹣2.
假设{an}中是否存在不同的三项ap,aq,ar(p,q,r∈N*)恰好成等差数列,
不妨设p<q<r,则(2p﹣2)+(2r﹣2)=2(2q﹣2),
于是2p+2r=2q+1,
所以1+2r﹣p=2q﹣p+1.
因p,q,r∈N*,且p<q<r,
所以1+2r﹣p是奇数,2q﹣p+1是偶数,
1+2r﹣p=2q﹣p+1不可能成立,
所以不存在不同的三项ap,aq,ar成等差数列.
科目:高中数学 来源: 题型:
| 1 |
| 3 |
| 1 |
| an |
| an |
| n |
| 1 |
| 3 |
| 3 |
| 4 |
查看答案和解析>>
科目:高中数学 来源:2012-2013学年广东省汕尾市陆丰市碣石中学高三(上)第四次月考数学试卷(理科)(解析版) 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com