已知椭圆
:
的离心率为
,过椭圆
右焦点
的直线
与椭圆
交于点
(点
在第一象限).
(Ⅰ)求椭圆
的方程;
(Ⅱ)已知
为椭圆
的左顶点,平行于
的直线
与椭圆相交于
两点.判断直线
是否关于直线
对称,并说明理由.
(Ⅰ)
(Ⅱ)对称
解析试题分析:(Ⅰ)由圆
方程可知圆心为
,即
,又因为离心率为
,可得
,根据椭圆中关系式
,可求
。椭圆方程即可求出。因为
,则右顶点为
,将其代入圆的方程可求半径
。(Ⅱ)由椭圆方程可知
,将
代入椭圆方程可得
。可得
,设直线
,然后和椭圆方程联立,消掉y(或x)得到关于x的一元二次方程。再根据韦达定理得出根与系数的关系。可得两直线
的斜率。当直线
是否关于直线
对称时两直线倾斜角互补,所以斜率互为相反数。把求得的两直线斜率相加若为0,则说明两直线对称。否则不对称。
试题解析:(Ⅰ)由题意得
, 1分
由
可得
, 2分
所以
, 3分
所以椭圆的方程为
. 4分
(Ⅱ)由题意可得点
, 6分
所以由题意可设直线
,
. 7分
设
,
由
得
.
由题意可得
,即
且
. 8分
. 9分
因为
10分![]()
, 13分
所以直线
关于直线
对称. 14分
考点:椭圆的基础知识、直线与椭圆的位置关系,考查分析问题、解决问题以及化归与转化的能力,考查综合素质。
科目:高中数学 来源: 题型:解答题
已知椭圆
的左、右焦点分别为
,离心率为
,P是椭圆上一点,且
面积的最大值等于2.
(1)求椭圆的方程;
(2)直线y=2上是否存在点Q,使得从该点向椭圆所引的两条切线相互垂直?若存在,求点Q的坐标;若不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知
是抛物线
上的两个点,点
的坐标为
,直线
的斜率为k,
为坐标原点.
(Ⅰ)若抛物线
的焦点在直线
的下方,求k的取值范围;
(Ⅱ)设C为W上一点,且
,过
两点分别作W的切线,记两切线的交点为
,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
经过点
,离心率为
.
(1)求椭圆C的方程:
(2)过点Q(1,0)的直线l与椭圆C相交于A、B两点,点P(4,3),记直线PA,PB的斜率分别为k1,k2,当k1·k2最大时,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知
是椭圆E:
的两个焦点,抛物线
的焦点为椭圆E的一个焦点,直线y=
上到焦点F1,F2距离之和最小的点P恰好在椭圆E上,
(Ⅰ)求椭圆E的方程;
(Ⅱ)如图,过点
的动直线
交椭圆于A、B两点,是否存在定点M,使以AB为直径的圆恒过这个点?若存在,求出点M的坐标;若不存在,请说明理由。![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:
的离心率与等轴双曲线的离心率互为倒数,直线
与以原点为圆心,以椭圆C的短半轴长为半径的圆相切。
(Ⅰ)求椭圆C的方程;
(Ⅱ)设M是椭圆的上顶点,过点M分别作直线MA,MB交椭圆于A,B两点,设两直线的斜率分别为k1,k2,且k1+k2=2,证明:直线AB过定点(―1,―1)
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的左右两焦点分别为
,
是椭圆上一点,且在
轴上方,![]()
.![]()
(1)求椭圆的离心率
的取值范围;
(2)当
取最大值时,过
的圆
的截
轴的线段长为6,求椭圆的方程;
(3)在(2)的条件下,过椭圆右准线
上任一点
引圆
的两条切线,切点分别为
.试探究直线
是否过定点?若过定点,请求出该定点;否则,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com