(本题满分15分) 如图,四边形
中,
为正三角形,
,
,
与
交于
点.将
沿边
折起,使
点至
点,已知
与平面
所成的角为
,且
点在平面
内的射影落在
内.
![]()
(Ⅰ)求证:
平面
;
(Ⅱ)若已知二面角
的余弦值为
,求
的大小.
(Ⅰ)只需证
、
即可;(Ⅱ)
。
【解析】
试题分析:(Ⅰ)易知
为
的中点,
则
,又
,
又
,
平面
,
所以
平面
(5分)
(Ⅱ)方法一:以
为
轴,
为
轴,过
垂直于
平面
向上的直线为
轴建立如图所示空间
直角坐标系,则
,![]()
(7分)
易知平面
的法向量为
(8分)
,
设平面
的法向量为![]()
则由
得,![]()
解得,
,令
,则
(11分)
则![]()
解得,
,即
,即
,
又
,∴
故
.(15分)
考点:线面垂直的判定定理;线面角;二面角的求法。
点评:用综合法求二面角,往往需要作出平面角,这是几何中一大难点,而用向量法求解二面角无需作出二面角的平面角,只需求出平面的法向量,经过简单运算即可,从而体现了空间向量的巨大作用.二面角的向量求法: ①若AB、CD分别是二面
的两个半平面内与棱
垂直的异面直线,则二面角的大小就是向量
与
的夹角; ②设
分别是二面角
的两个面α,β的法向量,则向量
的夹角(或其补角)的大小就是二面角的平面角的大小。
科目:高中数学 来源:2010-2011年江苏省如皋市五校高二下学期期中考试理科数学 题型:解答题
((本题满分15分)
某有奖销售将商品的售价提高120元后允许顾客有3次抽奖的机会,每次抽奖的方法是在已经设置并打开了程序的电脑上按“Enter”键,电脑将随机产生一个 1~6的整数数作为号码,若该号码是3的倍数则顾客获奖,每次中奖的奖金为100元,运用所学的知识说明这样的活动对商家是否有利。
查看答案和解析>>
科目:高中数学 来源:2011-2012学年浙江省招生适应性考试文科数学试卷(解析版) 题型:解答题
(本题满分15分)设函数
.
(Ⅰ)若函数
在
上单调递增,在
上单调递减,求实数
的最大值;
(Ⅱ)若
对任意的
,
都成立,求实数
的取值范围.
注:
为自然对数的底数.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年浙江省温州市十校联合体高三上学期期初摸底文科数学 题型:解答题
(本题满分15分)已知直线
与曲线
相切
1)求b的值;
2)若方程
在
上恰有两个不等的实数根
,求
①m的取值范围;
②比较
的大小
查看答案和解析>>
科目:高中数学 来源:2011-2012学年浙江省温州市十校联合体高三上学期期中考试文科数学 题型:解答题
(本题满分15分)已知抛物线
:
(
),焦点为
,直线
交抛物线
于
、
两点,
是线段
的中点,
过
作
轴的垂线交抛物线
于点
,
(1)若抛物线
上有一点
到焦点
的距离为
,求此时
的值;
(2)是否存在实数
,使
是以
为直角顶点的直角三角形?若存在,求出
的值;若不存在,说明理由。
![]()
查看答案和解析>>
科目:高中数学 来源:2011-2012学年浙江省六校高三第一次联考文科数学 题型:解答题
(本题满分15分)
已知函数![]()
(1)求
的单调区间;
(2)设
,若
在
上不单调且仅在
处取得最大值,求
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com