精英家教网 > 高中数学 > 题目详情
18、已知函数f(x)=x3+ax2+bx+c,g(x)=12x-4,若f(-1)=0,且f(x)的图象在点(1,f(1))处的切线为y=g(x).
(1)求实数a,b,c的值;
(2)求函数h(x)=f(x)-g(x)的单调区间.
分析:(1)把x=-1代入f(x)中化简得到a,b和c的等式记作①,然后求出f(x)的导函数,因为g(x)为f(x)的图象在(1,f(x))处的切线,所以得到f(1)等于g(1),即可得到f(1)的值,把x=1代入f(1)得到一个等式记作②,然后根据g(x)的斜率求出f′(1)的值,把x=1代入导函数中得到又一个等式记作③,联立①②③,即可求出a,b和c的值;
(2)把(1)中求出的a,b和c的值代入到f(x)中得到f(x)的解析式,然后把f(x)和g(x)的解析式代入h(x)=f(x)-g(x)中得到h(x)的解析式,求出h(x)的导函数,令导函数大于0列出关于x的不等式即可求出x的范围即为函数的增区间;令导函数小于0列出关于x的不等式,求出不等式的解集即可得到x的范围即为函数的减区间.
解答:解:(1)∵f(-1)=0,
∴-1+a-b+c=0①,
由f(x)=x3+ax2+bx+c,得f′(x)=3x2+2ax+b,
又∵f(x)的图象在点(1,f(1))处的切线方程为y=g(x)=12x-4,
∴f(1)=g(1)=12-4=8,且f′(1)=12,即a+b+c=7②,2a+b=9③,
联立方程①②③,解得:a=3,b=3,c=1;
(2)把(1)求得的a,b,c的值代入得f(x)=x3+3x2+3x+1,
∵h(x)=f(x)-g(x)=x3+3x2-9x+5,
∴h′(x)=3x2+6x-9=3(x+3)(x-1),
由h′(x)>0,解得x<-3或x>1;由h′(x)<0,解得-3<x<1,
∴h(x)的单调增区间为:(-∞,-3)和(1,+∞);单调减区间为:(-3,1).
点评:此题考查学生会利用导数求曲线上过某点切线方程的斜率,会利用导函数的正负判断函数的增减性得到函数的单调区间,是一道中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案