(本小题满分14分)如图,平面
平面
,四边形
为矩形,△
为等边三角形.
为
的中点,
.
![]()
(1)求证:
;
(2)求二面角
的正切值.
(1)详见解析;(2)![]()
【解析】
试题分析:(1)连接
,要证
,只需证明
面
,只需证明
, 由已知面面垂直,易证
,所以
,
面
,得到
,因为
,易证
,所以
面
,得
,得证
面
,即证
;(2)由(1),得
.不妨设
,则
.因为
为等边三角形,则![]()
过
作
,垂足为
,连接
,则
就是二面角
的平面角,易证
,求出.
试题解析:(1)证明:连结
,因
,
是
的中点,
![]()
故
. 1分
又因平面
平面
,
故
平面
,
于是
. 3分
又
,
所以
平面
,
所以
, 5分
又因
,故
平面
,
所以
. 7分
(2)由(1),得
.不妨设
,则
.
因为
为等边三角形,则
9分
过
作
,垂足为
,连接
,
则
就是二面角
的平面角. 11分
在
中,
,
,
,
所以
,又
,所以![]()
即二面角
的正切值为
. 14分
考点:1.面面垂直的性质;2线面垂直的判定,性质;3.二面角的求法.
科目:高中数学 来源: 题型:
| 3 |
| π |
| 4 |
| π |
| 4 |
| π |
| 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分14分)设椭圆C1的方程为
(a>b>0),曲线C2的方程为y=
,且曲线C1与C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设A、B是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。
查看答案和解析>>
科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题
(本小题满分14分)
已知
=2,点(
)在函数
的图像上,其中
=
.
(1)证明:数列
}是等比数列;
(2)设
,求
及数列{
}的通项公式;
(3)记
,求数列{
}的前n项和
,并证明
.
查看答案和解析>>
科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题
(本小题满分14分)
某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第
天(
)的销售价格(单位:元)为
,第
天的销售量为
,已知该商品成本为每件25元.
(Ⅰ)写出销售额
关于第
天的函数关系式;
(Ⅱ)求该商品第7天的利润;
(Ⅲ)该商品第几天的利润最大?并求出最大利润.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题
(本小题满分14分)已知
的图像在点
处的切线与直线
平行.
⑴ 求
,
满足的关系式;
⑵ 若
上恒成立,求
的取值范围;
⑶ 证明:
(
)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com