精英家教网 > 高中数学 > 题目详情
若从1,2,3…,10这10个数中任取3个数,则这三个数互不相邻的取法种数有( )
A.20种
B.56种
C.60种
D.120种
【答案】分析:按照数字的大小,从小到大排列,数字1开头的取法有21个,数字2开头的取法有15个,数字3开头的取法有10个,数字4开头的取法有6个,数字5开头的取法有3个,数字6开头的取法有一个,相加即得所求.
解答:解:按照数字的大小,从小到大排列,
数字1开头的取法有135、136、137、138、139、1310、146、147、148、149、1410、157、158、159、1510、
168、169、1510、179、1710、1810,共有6+5+4+3+2+1=21种.
数字2开头的取法有246、247、248、249、2410、257、258、259、2510、268、269、2610、
279、2710、2810,共有5+4+3+2+1=15种.
数字3开头的取法有357、358、359、3510、368、369、3610、379、3710、3810,
共有4+3+2+10种.
数字4开头的取法有 468、469、4610、479、4710、4810,共有6个.
数字5开头的取法有579、5710、5810,共有3个.
数字6开头的取法有6810,仅此一个.
综上,这三个数互不相邻的取法种数有21+15+10+6+3+1=56种,
故选 B.
点评:本题主要考查了排列组合,以及两个基本原理的应用,解题的关键是不遗漏不重复,体现了分类讨论的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设x2+ax+b2=0是关于x的一元二次方程
(1)若a,b是分别从{1,2,3,4},{0,1,2}中任取的数字,求方程有实根的概率.
(2)若a,b都是从区间[-1,1]中任取的一个数字,求方程有实根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为奇数,则不同的取法共有
60
60
种(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:

若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为奇数,则不同的取法共有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:
(1)设a,b∈R,a+bi=
11-7i1-2i
(i为虚数单位),求a+b的值.
(2)若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有m种.求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若从1,2,3,…,14这14个整数中同时取3个数,其中任意两数之差的绝对值不小于3,则不同的取法有
 
种.

查看答案和解析>>

同步练习册答案