【题目】在直角坐标系
中,曲线
的参数方程为
为参数且
,
,
,曲线
的参数方程为
为参数),以
为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)求
的普通方程及
的直角坐标方程;
(2)若曲线
与曲线
分别交于点
,
,求
的最大值.
科目:高中数学 来源: 题型:
【题目】某有机水果种植基地试验种植的某水果在售卖前要成箱包装,每箱80个,每一箱水果在交付顾客之前要按约定标准对水果作检测,如检测出不合格品,则更换为合格品.检测时,先从这一箱水果中任取10个作检测,再根据检测结果决定是否对余下的所有水果作检测.设每个水果为不合格品的概率都为
,且各个水果是否为不合格品相互独立.
(Ⅰ)记10个水果中恰有2个不合格品的概率为
,求
取最大值时p的值
;
(Ⅱ)现对一箱水果检验了10个,结果恰有2个不合格,以(Ⅰ)中确定的
作为p的值.已知每个水果的检测费用为1.5元,若有不合格水果进入顾客手中,则种植基地要对每个不合格水果支付a元的赔偿费用
.
(ⅰ)若不对该箱余下的水果作检验,这一箱水果的检验费用与赔偿费用的和记为X,求EX;
(ⅱ)以检验费用与赔偿费用和的期望值为决策依据,当种植基地要对每个不合格水果支付的赔偿费用至少为多少元时,将促使种植基地对这箱余下的所有水果作检验?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个调查学生记忆力的研究团队从某中学随机挑选100名学生进行记忆测试,通过讲解100个陌生单词后,相隔十分钟进行听写测试,间隔时间
(分钟)和答对人数
的统计表格如下:
时间 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
答对人数 | 98 | 70 | 52 | 36 | 30 | 20 | 15 | 11 | 5 | 5 |
| 1.99 | 1.85 | 1.72 | 1.56 | 1.48 | 1.30 | 1.18 | 1.04 | 0.7 | 0.7 |
时间
与答对人数
的散点图如图:
![]()
附:
,
,
,
,
,对于一组数据
,
,……,
,其回归直线
的斜率和截距的最小二乘估计分别为:
,
.请根据表格数据回答下列问题:
(1)根据散点图判断,
与
,哪个更适宣作为线性回归类型?(给出判断即可,不必说明理由)
(2)根据(1)的判断结果,建立
与
的回归方程;(数据保留3位有效数字)
(3)根据(2)请估算要想记住
的内容,至多间隔多少分钟重新记忆一遍.(参考数据:
,
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某物流公司专营从甲地到乙地的货运业务(货物全部用统一规格的包装箱包装),现统计了最近100天内每天可配送的货物量,按照可配送货物量T(单位:箱)分成了以下几组:
,
,
,
,
,
,并绘制了如图所示的频率分布直方图(同一组数据用该组数据的区间中点值作代表,将频率视为概率).
![]()
(1)该物流公司负责人决定用分层抽样的方法从前3组中随机抽出11天的数据来分析可配送货物量少的原因,并从这11天的数据中再抽出3天的数据进行财务分析,求这3天的数据中至少有2天的数据来自
这一组的概率.
(2)由频率分布直方图可以认为,该物流公司每日的可配送货物量T(单位:箱)服从正态分布
,其中
近似为样本平均数.
(ⅰ)试利用该正态分布,估计该物流公司2000天内日货物配送量在区间
内的天数(结果保留整数).
(ⅱ)该物流公司负责人根据每日的可配送货物量为公司装卸货物的员工制定了两种不同的工作奖励方案.
方案一:直接发放奖金,按每日的可配送货物量划分为以下三级:
时,奖励50元;
,奖励80元;
时,奖励120元.
方案二:利用抽奖的方式获得奖金,其中每日的可配送货物量不低于
时有两次抽奖机会,每日的可配送货物量低于
时只有一次抽奖机会,每次抽奖的奖金及对应的概率分别为
奖金 | 50 | 100 |
概率 |
|
|
小张恰好为该公司装卸货物的一名员工,试从数学期望的角度分析,小张选择哪种奖励方案对他更有利?
附:若
,则
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知斜率存在且不为0的直线
过点
,设直线
与椭圆
交于
两点,椭圆
的左顶点为
.
(1)若
的面积为
,求直线
的方程;
(2)若直线
分别交直线
于点
,且
,记直线
的斜率分别为
.探究:
是否为定值?若是,求出该定值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,
的最大值为
.
(Ⅰ)求实数
的值;
(Ⅱ)当
时,讨论函数
的单调性;
(Ⅲ)当
时,令
,是否存在区间
.使得函数
在区间
上的值域为
若存在,求实数
的取值范围;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com