精英家教网 > 高中数学 > 题目详情

已知:三个内角A,B,C所对的边,向量,设

(1)若,求角

(2)在(1)的条件下,若,求三角形ABC的面积.

 

【答案】

(1);(2)三角形ABC的面积为

【解析】

试题分析:(1)由向量数量积坐标计算公式可得函数的表达式,利用三角函数的有关公式(倍角公式、辅助角公式等)将其化简得,由已知,列出方程,即可求得角的值;(2)由已知条件,化为,结合正弦定理可得:,由此得,进而求出角的值.有三角形内角和定理得,联立,可求出角,最后可求得三角形ABC的面积.

试题解析:(1)

因为,即,所以(舍去)          6分

(2)由,则

所以,又因为,所以

所以三角形ABC是等边三角形,由,所以面积为.                12分

考点:1.向量数量积运算;2.利用三角恒等变换求角;3.正弦定理、余弦定理解三角形,求三角形的面积.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知△ABC三个内角A,B,C的对边分别为a,b,c,
3
b=2a•sinB
,且
AB
AC
>0

(1)求∠A的度数;
(2)若cos(A-C)+cosB=
3
2
,a=6,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC三个内角A,B,C的对边分别为a,b,c,
AB
AC
=6
,向量
s
=(cosA,sinA)
与向量
t
=(4,-3)
相互垂直.
(Ⅰ)求△ABC的面积;
(Ⅱ)若b+c=7,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
m
=(cosx+
3
sinx,1),
n
=(2cosx,-y)
,满足
m
n
=0

(1)将y表示为x的函数f(x),并求f(x)的单调递增区间;
(2)已知△ABC三个内角A、B、C的对边分别为a、b、c,若f(
A
2
)=3
,且a=2,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC三个内角A、B、C的对边分别为 a、b、c,向量 
 m
=(cos
C
2
,sin
C
2
),
n
=(cos
C
2
,-sin
C
2
),且
m
n
的夹角为
π
3

(Ⅰ)求角C的值;
(Ⅱ)已知c=3,△ABC的面积S=
4
3
3
,求a+b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC三个内角A、B、C的对边为a、b、c,
m
=(a,cosB),
n
=(cosA,-b),a≠b
,已知
m
n

(1)判断三角形的形状,并说明理由.
(2)若y=
sinA+sinB
sinAsinB
,试确定实数y的取值范围.

查看答案和解析>>

同步练习册答案