【题目】已知函数
且![]()
(1)讨论
的单调区间;
(2)若直线
的图象恒在函数
图象的上方,求
的取值范围.
科目:高中数学 来源: 题型:
【题目】已知数列{an},{bn}满足a1=1,an+1=2an+1,b1=4,bn﹣bn﹣1=an+1(n≥2).
(1)求证:数列{an+1}是等比数列;
(2)求数列{an},{bn}的通项公式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知:
、
、
是同一平面内的三个向量,其中
=(1,2)
(1)若|
|=2
,且
∥
,求
的坐标;
(2)若|
|=
,且
+2
与2
﹣
垂直,求v与
的夹角θ.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱柱
中,
底面
,底面
为菱形,
为
与
交点,已知
,
.
(I)求证:
平面
.
(II)在线段
上是否存在一点
,使得
平面
,如果存在,求
的值,如果不存在,请说明理由.
(III)设点
在
内(含边界),且
,求所有满足条件的点
构成的图形,并求
的最小值.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
(Ⅰ)
的最小正周期和单调递增区间;
(Ⅱ)已知a,b,c是△ABC三边长,且f(C)=2,△ABC的面积S=
,c=7.求角C及a,b的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知关于x的方程2x2﹣(
+1)x+m=0的两根为sinθ和cosθ,θ∈(0,π).求:
(1)m的值;
(2)
+
的值;![]()
(3)方程的两根及此时θ的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
为公差不为
的等差数列,
为前
项和,
和
的等差中项为
,且
.令
数列
的前
项和为
.
(1)求
及
;
(2)是否存在正整数
成等比数列?若存在,求出所有的
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某家电公司销售部门共有200位销售员,每位部门对每位销售员都有1400万元的年度销售任务,已知这200位销售员去年完成销售额都在区间
(单位:百万元)内,现将其分成5组,第1组,第2组,第3组,第4组,第5组对应的区间分别为
,
,
,
,
,绘制出频率分布直方图.
![]()
(1)求
的值,并计算完成年度任务的人数;
(2)用分层抽样从这200位销售员中抽取容量为25的样本,求这5组分别应抽取的人数;
(3)现从(2)中完成年度任务的销售员中随机选取2位,奖励海南三亚三日游,求获得此奖励的2位销售员在同一组的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com