精英家教网 > 高中数学 > 题目详情
(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
A.(不等式选做题)不等式|x-5|+|x+3|≥10的解集是______.
B.(坐标系与参数方程选做题)在极坐标系中,圆ρ=-2sinθ的圆心的极坐标是______.
C.(几何证明选做题)如图,已知圆中两条弦AB与CD相交于点F,E是AB延长线上一点,且DF=CF=,BE=1,BF=2,若CE与圆相切,则线段CE的长为______
【答案】分析:A.我们利用零点分段法,我们分类讨论三种情况下不等式的解,最后将三种情况下x的取值范围并起来,即可得到答案.
B.把圆的极坐标方程化为直角坐标方程,求出圆心的直角坐标,再把它化为极坐标.
C.由相交弦定理得DF•FC=AF•BF求出AF的长,再利用切割定理求出CE即可.
解答:解:A:当x<-3时
不等式|x-5|+|x+3|≥10可化为:-(x-5)-(x+3)≥10
解得:x≤-4
当-3≤x≤5时
不等式|x-5|+|x+3|≥10可化为:-(x-5)+(x+3)=8≥10恒不成立
当x>5时
不等式|x-5|+|x+3|≥10可化为:(x-5)+(x+3)≥10
解得:x≥6
故不等式|x-5|+|x+3|≥10解集为:(-∞,-4]∪[6,+∞).
B:圆ρ=-2sinθ 即 ρ2=-2ρsinθ,即 x2+y2+2y=0,即x2+(y+1)2=1.
表示以(0,-1)为圆心,半径等于1的圆,故圆心的极坐标为(1,).
C:由题意,DF=CF=,BE=1,BF=2,
由DF•FC=AF•BF,得=AF•2,
∴AF=4,又BF=2,BE=1,
∴AE=7;
由切割线定理得CE2=BE•EA=1×7=7.
∴CE=
故答案为:(-∞,-4]∪[6,+∞);(1,)(答案不唯一);
点评:A、本小题考查的知识点是绝对值不等式的解法,其中利用零点分段法进行分类讨论,将绝对值不等式转化为整式不等式是解答本题的关键.
B、本小题主要考查点的极坐标与直角坐标的互化,属于基础题.
C、本小题考查直线与圆的位置关系,考查计算能力,基本知识掌握的情况,是常考题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
A.(不等式选做题)不等式|x+1|≥|x+2|的解集为
 

B.(几何证明选做题)如图所示,过⊙O外一点P作一条直线与⊙O交于A,B两点,
已知PA=2,点P到⊙O的切线长PT=4,则弦AB的长为
 

C.(坐标系与参数方程选做题)若直线3x+4y+m=0与圆
x=1+cosθ
y=-2+sinθ
(θ为参数)没有公共点,则实数m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(三选一,考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
(1)(坐标系与参数方程选做题)在直角坐标系中圆C的参数方程为
x=1+2cosθ
y=
3
+2sinθ
(θ为参数),则圆C的普通方程为
(x-1)2+(y-
3
)2=4
(x-1)2+(y-
3
)2=4

(2)(不等式选讲选做题)设函数f(x)=|2x+1|-|x-4|,则不等式f(x)>2的解集为
{x|x<-7或x>
5
3
}
{x|x<-7或x>
5
3
}

(3)(几何证明选讲选做题) 如图所示,等腰三角形ABC的底边AC长为6,其外接圆的半径长为5,则三角形ABC的面积是
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评阅记分)
(A)(几何证明选做题)如图,CD是圆O的切线,切点为C,点B在圆O上,BC=2,∠BCD=30°,则圆O的面积为

(B)(极坐标系与参数方程选做题)极坐标方程ρ=2sinθ+4cosθ表示的曲线截θ=
π
4
(ρ∈R)
所得的弦长为
3
2
3
2

(C)(不等式选做题)  不等式|2x-1|<|x|+1解集是
(0,2)
(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评阅记分)
A.如图,△ABC是⊙O的内接三角形,PA是⊙O的切线,PB交AC于点E,交⊙O于点D.若PA=PE,∠ABC=60°,PD=1,PB=9,则EC=
4
4

B. P为曲线C1
x=1+cosθ
y=sinθ
,(θ为参数)上一点,则它到直线C2
x=1+2t
y=2
(t为参数)距离的最小值为
1
1

C.不等式|x2-3x-4|>x+1的解集为
{x|x>5或x<-1或-1<x<3}
{x|x>5或x<-1或-1<x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:

(考生注意:请在下列二题中任选一题作答,如果多做,则按所做的第一题评阅记分.)
(A)(选修4-4坐标系与参数方程)曲线
x=cosα
y=a+sinα
(α为参数)与曲线ρ2-2ρcosθ=0的交点个数为
 
个.
(B)(选修4-5不等式选讲)若不等式|x+1|+|x-3| ≥a+
4
a
对任意的实数x恒成立,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案