精英家教网 > 高中数学 > 题目详情
21.在以O为原点的直角坐标系中,点A(4,-3)为△OAB的直角顶点.已知|AB|=2|OA|,且点B的纵坐标大于零.

(1)求向量的坐标;

(2)求圆x2-6x+y2+2y=0关于直线OB对称的圆的方程;

(3)是否存在实数a,使抛物线y=ax2-1上总有关于直线OB对称的两个点?若不存在,说明理由;若存在,求a的取值范围.

21.(1)设=(u,v),则由,即,

,或.

因为=+=(u+4,v-3),

所以v-3>0,得v=8,故=(6,8).

 

(2)由=(10,5),得B(10,5),于是直线OB方程为:y=x.

由条件可知圆的标准方程为:(x-3)2+(y+1)2=10,得圆心(3,-1),半径为.

设圆心(3,-1)关于直线OB的对称点为(x, y),则

,得,

故所求圆的方程为(x-1)2+(y-3)2=10.

 

(3)设P(x1,y1),Q(x2,y2)为抛物线上关于直线OB对称的两点,则

,得.

x1x2为方程x2+x+=0的两个相异实根,于是由Δ=-4·>0,得a>.

故当a>时,抛物线y=ax2-1上总有关于直线OB对称的两点.

 

 


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在以O为原点的直角坐标系中,点A(4,-3)为△OAB的直角顶点.已知|AB|=2|OA|,且点B的纵坐标大于零.
(1)求向量
AB
的坐标;
(2)求圆x2-6x+y2+2y=0关于直线OB对称的圆的方程;
(3)是否存在实数a,使抛物线y=ax2-1上总有关于直线OB对称的两个点?若不存在,说明理由:若存在,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在以O为原点的直角坐标系中,点A(4,-3)为△OAB的直角顶点,已知|AB|=2|OA|,且点B的纵坐标大于0.
(Ⅰ)求
AB
的坐标;
(Ⅱ)求圆x2-6x+y2+2y=0关于直线OB对称的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

在以O为原点的直角坐标系中,点A(4,-3)为△OAB的直角顶点,若|AB|=2|OA|,且点B的纵坐标大于0
(1)求向量
AB
的坐标;
(2)是否存在实数a,使得抛物线y=ax2-1上总有关于直线OB对称的两个点?若存在,求实数a的取值范围,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(03年上海卷)(14分)

在以O为原点的直角坐标系中,点A(4,-3)为△OAB的直角顶点.已知|AB|=2|OA|,且点B的纵坐标大于零.

   (1)求向量的坐标;

   (2)求圆关于直线OB对称的圆的方程;

   (3)是否存在实数a,使抛物线上总有关于直线OB对称的两个点?若不存在,说明理由:若存在,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在以O为原点的直角坐标系中,点A(4,-3)为△OAB的直角顶点,已知|AB|=2|OA|,且点B的纵坐标大于0。

(Ⅰ)求的坐标;

(Ⅱ)求圆关于直线OB对称的圆的方程。

查看答案和解析>>

同步练习册答案