【题目】已知中心在原点
,焦点在
轴上的椭圆
过点
,离心率为
.
(1)求椭圆
的方程;
(2)直线
过椭圆
的左焦点
,且与椭圆
交于
两点,若
的面积为
,求直线
的方程.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知直线
∶
和圆
∶
,
是直线
上一点,过点
作圆
的两条切线,切点分别为
.
(1)若
,求点
坐标;
(2)若圆
上存在点
,使得
,求点
的横坐标的取值范围;
(3)设线段
的中点为
,
与
轴的交点为
,求线段
长的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】袋子中装有除颜色外其他均相同的编号为a,b的2个黑球和编号为c,d,e的3个红球.
(1)若从中一次性(任意)摸出2个球,求恰有一个黑球和一个红球的概率;
(2)若从中任取一个球给小朋友甲,然后再从中任取一个球给小朋友乙,求甲、乙两位小朋友拿到的球中恰好有一个黑球的概率.
(3)若从中连续取两次,每次取一球后放回,求取出的两个球恰好有一个黑球的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,一单位圆的圆心的初始位置在
,此时圆上一点P的位置在
,圆在x轴上沿正向滚动.当圆滚动到圆心位于
时,
的坐标为________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,
,(其中
,
为自然对数的底数,
……).
(1)令
,若
对任意的
恒成立,求实数
的值;
(2)在(1)的条件下,设
为整数,且对于任意正整数
,
,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知中心在原点的双曲线
的右焦点为
,直线
与双曲线
的一个交点的横坐标为
.
(1)求双曲线
的标准方程;
(2)过点
,倾斜角为
的直线
与双曲线
相交于
、
两点,
为坐标原点,求
的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,
与
都是正三角形,
,
.
![]()
(Ⅰ)求证:
;
(Ⅱ)若
,试求
的值,使直线
与
所成角的正弦值为
;
(Ⅲ)若
,试写出三棱锥
与三棱锥
的体积比.(不要求写求解过程)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥
中,
底面ABC,
点D,E分别为棱PA,PC的中点,M是线段AD的中点,N是线段BC的中点,
,
.
![]()
Ⅰ
求证:
平面BDE;
Ⅱ
求直线MN到平面BDE的距离;
Ⅲ
求二面角
的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂为了对研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
单价 | 9 | 9.2 | 9.4 | 9.6 | 9.8 | 10 |
销量 | 100 | 94 | 93 | 90 | 85 | 78 |
预计在今后的销售中,销量与单价仍然服从这种线性相关关系,且该产品的成本是5元/件,为使工厂获得最大利润,该产品的单价应定为( )
(附:对于一组数据
,
,…,
,其回归直线
的斜率的最小二乘估计值为
.参考数值:
,
)
A. 9.4元 B. 9.5元 C. 9.6元 D. 9.7元
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com