精英家教网 > 高中数学 > 题目详情

开始依次按如下规则将某些数染成红色:先染1,再染两个偶数2、4;再染4后面最邻近的三个连续奇数5、7、9;再染9后面最邻近的四个连续偶数10、12、14、16;再染此后最邻近的五个连续奇数17、19、21、23、25;按此规则一直染下去,得到一红色子数列1,2,4,5,7,9,10,12,14,16,17,…….则在这个红色子数列中,由1开始的第2011个数是_____________.

【答案】3959

【解析】首先分组,第一组一个数,第二组两个数,……。所以前n组共有个数,因此第2011个数是第63组的第58个数。我们观察没组数的最后一个数,发现:第一组是1,第二组是4,第三组是9,第四组是16,……,所以第63组的最后一个数为,又第63组为奇数组,所以第63组的第58个数是3959.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在正整数数列中,由1开始依次按如下规则将某些数染成红色.先染1,再染2个偶数2、4;再染4后面最邻近的3个连续奇数5、7、9;再染9后面最邻近的4个连续偶数10、12、14、16;再染16后面最邻近的5个连续奇数17、19、21、23、25.按此规则一直染下去,得到一红色子数列1,2,4,5,7,9,10,12,14,16,17,….则在这个红色子数列中,由1开始的第2009个数是(  )
A、3948B、3953C、3955D、3958

查看答案和解析>>

科目:高中数学 来源: 题型:

14、在正整数数列中,由1开始依次按如下规则将某些数染成红色,先染1,再染2个偶数2、4;再染4后面最邻近的3个连续奇数5、7、9;再染9后面最邻近的4个连续偶数10、12、14、16;再染此后最邻近的5个连续奇数17、19、21、23、25.按此规则一直染下去,得到一红色子数列1,2,4,5,7,9,12,14,16,17,….则在这个红色子数列中,由1开始的第57个数是
103

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•延安模拟)在正整数数列中,由1开始依次按如下规则将某些数染成红色:先染1,再染两个偶数2、4;再染4后面最邻近的三个连续奇数5、7、9;再染9后面最邻近的四个连续偶数10、12、14、16;再染此后最邻近的五个连续奇数17、19、21、23、25;按此规则一直染下去,得到一红色子数列1,2,4,5,7,9,10,12,14,16,17,….则在这个红色子数列中,由1开始的第2011个数是
3959
3959

查看答案和解析>>

科目:高中数学 来源: 题型:

在正整数数列中,由1开始依次按如下规则将某些数染成红色.先染1;再染两个偶数2,4;再染4后面最临近的三个连续奇数5,7,9;再染9后面最临近的四个连续偶数10,12,14,16;再染此后最临近的五个连续奇数17,19,21,23,25.按此规则一直染下去.得到一个红色子数列1,2,4,5,7,9,10,12,14,16,17,19,21,23,25….则红色子数列由1开始的第2010个数是
3957
3957

查看答案和解析>>

科目:高中数学 来源:2011年陕西省宝鸡市高三质量检测数学试卷(理科)(解析版) 题型:解答题

在正整数数列中,由1开始依次按如下规则将某些数染成红色,先染1,再染2个偶数2、4;再染4后面最邻近的3个连续奇数5、7、9;再染9后面最邻近的4个连续偶数10、12、14、16;再染此后最邻近的5个连续奇数17、19、21、23、25.按此规则一直染下去,得到一红色子数列1,2,4,5,7,9,12,14,16,17,….则在这个红色子数列中,由1开始的第57个数是    

查看答案和解析>>

同步练习册答案