精英家教网 > 高中数学 > 题目详情
已知向量
a
=(
3
,-1)
b
=(sinx,cosx)
,函数f(x)=
a
b

(1)求f(x)的表达式;
(2)写出函数f(x)的周期并求函数f(x)的最大值.
分析:(1)由向量
a
=(
3
,-1)
b
=(sinx,cosx)
,函数f(x)=
a
b
,结合平面向量的数量积的运算法则,我们易给出函数f(x)的解析式.
(2)由(1)中给出的函数f(x)的解析式,结合正弦型函数的性质,不难给出函数f(x)的周期及最大值.
解答:解:(1)∵向量
a
=(
3
,-1)
b
=(sinx,cosx)

f(x)=
a
b
=
3
sinx-cosx
=2sin(x-
π
6
)

(2)∵f(x)=2sin(x-
π
6
)

∴T=2π,
f(x)的最大值为2.
点评:函数y=Asin(ωx+φ)(A>0,ω>0)中,最大值或最小值由A确定,由周期由ω决定,即要求三角函数的周期与最值一般是要将其函数的解析式化为正弦型函数,再根据最大值为|A|,最小值为-|A|,周期T=
π
ω
进行求解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(3,1)
b
=(1,3)
c
=(k,2)
,若(
a
-
c
)⊥
b
则k=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(
3
,1),
b
=(-1,0),则向量
a
b
的夹角为(  )
A、
π
6
B、
3
C、
π
2
D、
6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(3,2)
b
=(2,n)
,若
a
b
垂直,则n=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(-3,4)
b
=(1,-1)
,则向量
a
b
方向上的投影为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(-3,4),
b
=(5,-2)
,则|
a
-
b
|
=
10
10

查看答案和解析>>

同步练习册答案