精英家教网 > 高中数学 > 题目详情
已知二次函数f(x)满足f(0)=3,f(3)=f(-1)=0.
(1)求f(x)的解析式,并求出函数的值域;
(2)若f(x-1)=-x2+4,求x的值.
分析:(1)由f(3)=f(-1)=0,可求函数f(x)的零点,进而可设函数的零点式,然后根据f(0)=3可得一方程,求出f(x)解析式后配方可求函数的值域;
(2)表示出f(x-1)可把f(x-1)=-x2+4化为具体方程,解出即可;
解答:解:(1)由f(3)=f(-1)=0,知3,-1是函数f(x)的零点,
可设f(x)=a(x-3)(x+1)(a≠0),
∵f(0)=3,
∴a(0-3)(0+1)=3,解得a=-1,
∴f(x)=-(x-3)(x+1)=-x2+2x+3,即f(x)=-x2+2x+3,
∴f(x)=-x2+2x+3=-(x-1)2+4≤4,
故f(x)的值域为(-∞,4];
(2)由(1)知f(x)=-x2+2x+3,
∴f(x-1)=-(x-1)2+2(x-1)+3=-x2+4x,
∴f(x-1)=-x2+4可化为-x2+4x=-x2+4,即4x=4,解得x=1,
故x的值为1.
点评:本题考查二次函数解析式的求解、函数的零点及函数值域的求法,属基础题,若已知函数类型求函数解析式,常用待定系数法求解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2+2(m-2)x+m-m2
(I)若函数的图象经过原点,且满足f(2)=0,求实数m的值.
(Ⅱ)若函数在区间[2,+∞)上为增函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c(a≠0)的图象过点(0,1),且与x轴有唯一的交点(-1,0).
(Ⅰ)求f(x)的表达式;
(Ⅱ)设函数F(x)=f(x)-kx,x∈[-2,2],记此函数的最小值为g(k),求g(k)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-16x+q+3.
(1)若函数在区间[-1,1]上存在零点,求实数q的取值范围;
(2)若记区间[a,b]的长度为b-a.问:是否存在常数t(t≥0),当x∈[t,10]时,f(x)的值域为区间D,且D的长度为12-t?请对你所得的结论给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州一模)已知二次函数f(x)=x2+ax+m+1,关于x的不等式f(x)<(2m-1)x+1-m2的解集为(m,m+1),其中m为非零常数.设g(x)=
f(x)x-1

(1)求a的值;
(2)k(k∈R)如何取值时,函数φ(x)=g(x)-kln(x-1)存在极值点,并求出极值点;
(3)若m=1,且x>0,求证:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知二次函数f(x)的图象与x轴的两交点为(2,0),(5,0),且f(0)=10,求f(x)的解析式.
(2)已知二次函数f(x)的图象的顶点是(-1,2),且经过原点,求f(x)的解析式.

查看答案和解析>>

同步练习册答案