(本小题满分14分)
已知动圆P(圆心为点P)过定点A(1,0),且与直线
相切。记动点P的轨迹为C。
(Ⅰ)求轨迹C的方程;
(Ⅱ)设过点P的直线l与曲线C相切,且与直线
相交于点Q。试研究:在x轴上是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出点M的坐标;若不存在,说明理由。
(Ⅰ)
(Ⅱ)x轴上存在定点M(1,0),使得以PQ为直径的圆恒过点M
解析试题分析:(Ⅰ)因为动圆P过定点A(1,0),且与直线x=-1相切,
所以圆心P到点A(1,0)的距离与到直线x=-1的距离相等。
根据抛物线定义,知动点P的轨迹为抛物线,且方程为C:
。 4分
(Ⅱ)设直线l的方程为
,(易知斜率不存在的直线不符合要求)
由
,消去y得
,
由题意,得k≠0,且
,化简得km=1。 6分
设直线l与曲线C相切的切点P(x0,y0),
则![]()
所以
,
由
。 8分
若取k=1,m=1,此时P(1,2),Q(-1,0),以PQ为直径的圆为
,交x轴于点M1(1,0),M2(-1,0);
若取
,此时
以PQ为直径的圆为
,交x轴于点M3(1,0),M4
。
所以若符合条件的点M存在,则点M的坐标必为(1,0)。(即为点A) 10分
以下证明M(1,0)就是满足条件的点。
因为M的坐标为(1,0),
所以
, 11分
从而
,
故恒有
,
即在x轴上存在定点M(1,0),使得以PQ为直径的圆恒过点M。 14分
考点:动点的轨迹方程的求解及直线与圆锥曲线相交相切位置关系的考查
点评:第一问用定义法求动点的轨迹方程是圆锥曲线题目经常出现的类型,第二问证明动圆过定点先通过两个特殊圆找到过的定点,进而证明此点在任意的以PQ为直径的圆上
科目:高中数学 来源: 题型:解答题
(本小题满分12分)已知直线
经过椭圆
的左顶点A和上顶点D,椭圆
的右顶点为
,点
和椭圆
上位于
轴上方的动点,直线,
与直线
分别交于
两点。![]()
(I)求椭圆
的方程;
(Ⅱ)求线段MN的长度的最小值;
(Ⅲ)当线段MN的长度最小时,在椭圆
上是否存在这
样的点
,使得
的面积为
?若存在,确定点
的个数,若不存在,说明理由
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分12分)设椭圆E:
(a,b>0)过M(2,
) ,N(
,1)两点,O为坐标原点.
(Ⅰ)求椭圆E的方程;
(Ⅱ)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交A,B且
?若存在,写出该圆的方程,若不存在说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系
中,抛物线C的顶点在原点,焦点F的坐标为(1,0)。
(1)求抛物线C的标准方程;
(2)设M、N是抛物线C的准线上的两个动点,且它们的纵坐标之积为
,直线MO、NO与抛物线的交点分别为点A、B,求证:动直线AB恒过一个定点。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
抛物线的顶点在原点,焦点在x轴的正半轴上,直线x+y-1=0与抛物线相交于A、B两点,且
。
(1) 求抛物线方程;
(2) 在x轴上是否存在一点C,使得三角形ABC是正三角形? 若存在,求出点C的坐标,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分13分)已知椭圆C1:
的离心率为
,直线l: y-=x+2与.以原点为圆心、椭圆C1的短半轴长为半径的圆O相切.
(1)求椭圆C1的方程;
(ll)设椭圆C1的左焦点为F1,右焦点为F2,直线l2过点F价且垂直于椭圆的长轴,动直线l2垂直于l1,垂足为点P,线段PF2的垂直平分线交l2于点M,求点M的轨迹C2的方程;
(III)过椭圆C1的左顶点A作直线m,与圆O相交于两点R,S,若△ORS是钝角三角形, 求直线m的斜率k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分12分)如图,在平面直坐标系
中,已知椭圆
,经过点
,其中e为椭圆的离心率.且椭圆
与直线
有且只有一个交点。![]()
(Ⅰ)求椭圆
的方程;
(Ⅱ)设不经过原点的直线
与椭圆
相交与A,B两点,第一象限内的点
在椭圆上,直线
平分线段
,求:当
的面积取得最大值时直线
的方程。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com