(湖南卷理20)若A、B是抛物线y2=4x上的不同两点,弦AB(不平行于y轴)的垂直平分线与x轴相交于点P,则称弦AB是点P的一条“相关弦”.已知当x>2时,点P(x,0)存在无穷多条“相关弦”.给定x0>2.
(I)证明:点P(x0,0)的所有“相关弦”的中点的横坐标相同;
(II) 试问:点P(x0,0)的“相关弦”的弦长中是否存在最大值?若存在,求其最大值(用x0表示):若不存在,请说明理由.
解: (I)设AB为点P(x0,0)的任意一条“相关弦”,且点A、B的坐标分别是
(x1,y1)、(x2,y2)(x1
x2),则y21=4x1, y22=4x2,
两式相减得(y1+y2)(y1-y2)=4(x1-x2).因为x1
x2,所以y1+y2
0.
设直线AB的斜率是k,弦AB的中点是M(xm, ym),则k=
.从而AB的垂直平分线l的方程为 ![]()
又点P(x0,0)在直线
上,所以 ![]()
而
于是
故点P(x0,0)的所有“相关弦”的中点的横坐标都是x0-2.
(Ⅱ)由(Ⅰ)知,弦AB所在直线的方程是
,代入
中,
整理得
(·)
则
是方程(·)的两个实根,且![]()
设点P的“相关弦”AB的弦长为l,则
![]()
![]()
因为0<
<4xm=4(xm-2) =4x0-8,于是设t=
,则t
(0,4x0-8).
记l2=g(t)=-[t-2(x0-3)]2+4(x0-1)2.
若x0>3,则2(x0-3)
(0, 4x0-8),所以当t=2(x0-3),即
=2(x0-3)时, l有最大值2(x0-1).
若2<x0<3,则2(x0-3)
0,g(t)在区间(0,4 x0-8)上是减函数,
所以0<l2<16(x0-2),l不存在最大值.
综上所述,当x0>3时,点P(x0,0)的“相关弦”的弦长中存在最大值,且最大值
为2(x0-1);当2< x0
3时,点P(x0,0)的“相关弦”的弦长中不存在最大值.
科目:高中数学 来源: 题型:
(湖南卷理20)若A、B是抛物线y2=4x上的不同两点,弦AB(不平行于y轴)的垂直平分线与x轴相交于点P,则称弦AB是点P的一条“相关弦”.已知当x>2时,点P(x,0)存在无穷多条“相关弦”.给定x0>2.
(I)证明:点P(x0,0)的所有“相关弦”的中点的横坐标相同;
(II) 试问:点P(x0,0)的“相关弦”的弦长中是否存在最大值?若存在,求其最大值(用x0表示):若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com