精英家教网 > 高中数学 > 题目详情
设不等式组
x>0
y>0
y≤-nx+3n
所表示的平面区域为Dn,记Dn内的格点(格点即横坐标和纵坐标皆为整数的点)的个数为f(n)(n∈N*).
(1)求f(1)、f(2)的值及f(n)的表达式;
(2)设bn=2nf(n),Sn为{bn}的前n项和,求Sn
(3)记Tn=
f(n)f(n+1)
2n
,若对于一切正整数n,总有Tn≤m成立,求实数m的取值范围.
分析:(1)据可行域,求出当x=1,x=2时,可行域中的整数点,分别求出f(1),f(2),f(n).
(2)由于数列的通项是一个等差数列与一个等比数列的积构成的新数列,利用错位相减的方法求出数列的和.
(3)求出
Tn+1
Tn
,据它的符号判断出Tn的单调性,求出Tn的最大值,令m大于等于最大值即可.
解答:解:画出
x>0
y>0
y≤-nx+3n
的可行域
精英家教网
(1)f(1)=2+1=3
f(2)=3+2+1=6
当x=1时,y=2n,可取格点2n个;当x=2时,y=n,可取格点n个
∴f(n)=3n
(2)由题意知:bn=3n•2n
Sn=3•21+6•22+9•23+…+3(n-1)•2n-1+3n•2n
∴2Sn=3•22+6•23+…+3(n-1)•2n+3n•2n+1
∴-Sn=3•21+3•22+3•23+…3•2n-3n•2n+1
=3(2+22+…+2n)-3n•2n+1
=3•
2-2n+1
1-2
-3n2n+1

=3(2n+1-2)-3nn+1
∴-Sn=(3-3n)2n+1-6
Sn=6+(3n-3)2n+1
(3)Tn=
f(n)f(n+1)
2n
=
3n(3n+3)
2n

Tn+1
Tn
=
(3n+3)(3n+6)
2n+1
3n(3n+3)
2n
=
n+2
2n
当n=1时,
n+2
2n
>1
当n=2时,
n+2
2n
=1
当n≥3时,
n+2
2n
<1

∴T1<T2=T3>T4>…>Tn
故Tn的最大值是T2=T3=
27
2

∴m≥
27
2
点评:求数列的前n项和,先求出数列的通项,据数列通项的特点,选择合适的求和方法;解决数列的单调性问题只能通过判断相邻项的差的符号或相邻项的比与1的大小.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设不等式组
|x|-2≤0
y-3≤0
x-2y≤2
所表示的平面区域为S,则S的面积为
 
;若A、B为S内的两个点,则|AB|的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网在平面直角坐标系上,设不等式组
x>0
y>0
y≤-m(x-3)
(n∈N*
所表示的平面区域为Dn,记Dn内的整点(即横坐标和纵坐标均
为整数的点)的个数为an(n∈N*).
(Ⅰ)求a1,a2,a3并猜想an的表达式再用数学归纳法加以证明;
(Ⅱ)设数列{an}的前项和为Sn,数列{
1
Sn
}的前项和Tn
是否存在自然数m?使得对一切n∈N*,Tn>m恒成立.若存在,
求出m的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设不等式组
x>0
y>0
y≤-nx+4n
(n∈N*)
所表示的平面区域Dn的整点(即横坐标和纵坐标均为整数的点)个数为an,则
1
2010
(a2+a4+…+a2010)
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•茂名二模)在平面直角坐标系上,设不等式组
x>0
y≥0
y≤-2n(x-3)
(n∈N*)表示的平面区域为Dn,记Dn内的整点(横坐标和纵坐标均为整数的点)的个数为an
(1)求出a1,a2,a3的值(不要求写过程);
(2)证明数列{an}为等差数列;
(3)令bn=
1
anan+1
(n∈N*),求b1+b2+…+bn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•宣武区一模)设不等式组
x>0
y>0
y≤-nx+3n
所表示的平面区域为Dn,记Dn内的整点个数为an(n∈N*).(整点即横坐标和纵坐标均为整数的点)
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)记数列{an}的前n项和为Sn,且Tn=
Sn
3•2n-1
,若对于一切的正整数n,总有Tn≤m,求实数m的取值范围.

查看答案和解析>>

同步练习册答案