精英家教网 > 高中数学 > 题目详情
如图ABCD—A1B1C1D1是正四棱柱,侧棱长为1,底面边长为2,E是棱BC的中点.

(1)求三棱锥D1—DBC的体积;

(2)证明BD1∥平面C1DE;

(3)求面C1DE与面CDE所成二面角的正切值.

解析:(1)解析:.

(2)证明:记D1C与DC1的交点为O,连结OE.

∵O是CD1的中点,E是BC的中点,∴EO∥BD1.

∵BD1平面C1DE,EO平面C1DE,∴BD1∥平面C1DE.

(3)解析:如图2,过C作CH⊥DE于H,连结C1H.在正四棱柱ABCD-A1B1C1D1中,C1C⊥平面ABCD,∴C1H⊥DE,∠C1HC是面C1DE与面CDE所成二面角的平面角.

∵DC=2,CC1=1,CE=1,

∴tan C1HC=

即面C1DE与面CDE所成二面角的正切值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,长方体ABCD-A1B1C1D1中,AB=A1A=a,BC=
2
a,M是AD中点,N是B1C1中点.
(1)求证:A1、M、C、N四点共面;
(2)求证:BD1⊥MCNA1
(3)求证:平面A1MNC⊥平面A1BD1
(4)求A1B与平面A1MCN所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在长方体ABCD-A1B1C1D1中,点E、F分别BB1、DD1上,且AE⊥A1B,AF⊥A1D.
(1)求证:A1C⊥平面AEF;
(2)若规定两个平面所成的角是这两个平面所组成的二面角中的锐角(或直角),则在空间中有定理:若两条直线分别垂直于两个平面,则这两条直线所成的角与这两个平面所成的角相等.
试根据上述定理,在AB=4,AD=3,AA1=5时,求平面AEF与平面D1B1BD所成的角的大小.(用反三角函数值表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在正方体ABCD-A1B1C1D1中,棱长为a,M、N分别为A1B和AC上的点,A1M=AN=
2
a
3
,则MN与平面BB1C1C的位置关系是(  )
A、相交B、平行
C、垂直D、不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在正方体ABCD-A1B1C1D1中,直线A1B与平面A1B1CD所成的角的大小等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•无锡二模)如图,已知四棱柱ABCD-A1B1C1D1的底面ABCD为直角梯形,AB∥CD,AB⊥AD,AB=AD=A1B=2CD,侧面A1ADD1为正方形.
(1)求直线A1A与底面ABCD所成角的大小;
(2)求二面角C-A1B-A正切值的大小;
(3)在棱C1C上是否存在一点P,使得 D1P∥平面A1BC,若存在,试说明点P的位置;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案