精英家教网 > 高中数学 > 题目详情
设函数f(x)=(1+x)2-2ln(1+x).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)当0<a<2时,求函数g(x)=f(x)-x2-ax-1在区间[0,3]的最小值.
【答案】分析:(Ⅰ)首先求出函数的导数,然后令f′(x)=0,解出函数的极值点,最后根据导数判断函数的单调性,从而求函数f(x)的单调区间.
(Ⅱ)因为函数g(x)=f(x)-x2-ax-1,求出g(x)的导数,求出函数的单调区间,然后只需讨论与3的大小,从而分类讨论求出函数g(x)=f(x)-x2-ax-1在区间[0,3]的最小值.
解答:本小题满分(14分)
解:(Ⅰ)∵(2分)
由f'(x)>0,得-2<x<-1或x>0;由f'(x)<0,得x<-2或-1<x<0.
又∵f(x)定义域为(-1,+∞),
∴所以函数f(x)的单调递增区间为(0,+∞),单调递减区间为(-1,0)(5分)
(Ⅱ)由g(x)=f(x)-x2-ax-1
即g(x)=2x-ax-2ln(1+x),(7分)
令g'(x)=0由0<a<2及x>-1,得
且当时f(x)取得极小值.(8分)
∵求f(x)在区间[0,3]上最小值
∴只需讨论与3的大小
①当<3
所以函数g(x)在[0,3]上最小值为(10分)
②当=3
所以函数g(x)在[0,3]上最小值为(11分)
③当>3
所以函数g(x)在[0,3]上最小值为g(3)=(13分)
所以,综上可知当时,函数g(x)在[0,3]上最小值为
时,函数g(x)在[0,3]上最小值为.(14分)
点评:此题主要考查函数导数与函数单调性之间的关系,掌握并会熟练运用导数判断函数的单调性,要学会分类讨论,难度较大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=ax3-3x+1(x∈R),若对于任意的x∈[-1,1]都有f(x)≥0成立,则实数a的值为
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•安徽)设函数f(x)=ax-(1+a2)x2,其中a>0,区间I={x|f(x)>0}
(Ⅰ)求I的长度(注:区间(a,β)的长度定义为β-α);
(Ⅱ)给定常数k∈(0,1),当1-k≤a≤1+k时,求I长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•浦东新区二模)记函数f(x)=f1(x),f(f(x))=f2(x),它们定义域的交集为D,若对任意的x∈D,f2(x)=x,则称f(x)是集合M的元素.
(1)判断函数f(x)=-x+1,g(x)=2x-1是否是M的元素;
(2)设函数f(x)=log2(1-2x),求f(x)的反函数f-1(x),并判断f(x)是否是M的元素;
(3)f(x)=
axx+b
∈M(a<0),求使f(x)<1成立的x的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

记函数f(x)=f1(x),f(f(x))=f2(x),它们定义域的交集为D,若对任意的x∈D,f2(x)=x,则称f(x)是集合M的元素,
例如f(x)=-x+1,对任意x∈R,f2(x)=f(f(x))=-(-x+1)+1=x,故f(x)=-x+1∈M.
(1)设函数f(x)=log2(1-2x),判断f(x)是否是M的元素,并求f(x)的反函数f-1(x);
(2)f(x)=
axx+b
∈M
(a<0),求使f(x)<1成立的x的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)设函数f(x)=xlog2x+(1-x)log2(1-x)(0<x<1),求f(x)的最小值.
(2)设正数P1,P2,P3,…P2n满足P1+P2+…P2n=1,求证:P1log2P1+P2log2P2+P3log2P3+…+P2nlog2P2n≥-n.

查看答案和解析>>

同步练习册答案