精英家教网 > 高中数学 > 题目详情
双曲线方程为x2-
y24
=1,过P(1,0)的直线L与双曲线只有一个公共点,则L的条数共有
3
3
条.
分析:因为点 (1,1)在双曲线x2-y2=3的渐近线上,所以结合双曲线的性质与图形可得过点(1,1)与双曲线公有一个公共点的直线有3条.
解答:解:由题意可得:双曲线x2-
y2
4
=1的渐近线方程为:y=±2x,
点P(1,0)是双曲线的顶点,故直线x=1 与双曲线只有一个公共点;
过点P (1,0)平行于渐近线y=±2x时,直线L与双曲线只有一个公共点,有2条
所以,过P(1,0)的直线L与双曲线只有一个公共点,共有3条
故答案为:3.
点评:本题以双曲线为载体,主要考查了直线与圆锥曲线的综合问题.突出考查了双曲线的几何性质.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

以y=±
3
x为渐近线,一个焦点是F(2,0)的双曲线方程为
x2-
y2
3
=1
x2-
y2
3
=1
,离心率为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A(-1,0),B(1,0),设M(x,y)为平面内的动点,直线AM,BM的斜率分别为k1,k2
①若
k1
k2
=2
,则M点的轨迹为直线x=-3(除去点(-3,0))
②若k1•k2=-2,则M点的轨迹为椭圆x2+
y2
2
=1
(除去长轴的两个端点)
③若k1•k2=2,则M点的轨迹为双曲线x2-
y2
2
=1

④若k1+k2=2,则M点的轨迹方程为:y=x-
1
x
(x≠±1)
⑤若k1-k2=2,则M点的轨迹方程为:y=-x2+1(x≠±1)
上述五个命题中,正确的有
①④⑤
①④⑤
(把所有正确命题的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的方程为x2-
y24
=1
,则其渐近线方程为
y=±2x
y=±2x

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•济南一模)已知抛物线y2=4x的焦点F恰好是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的右顶点,且渐近线方程为y=±
3
x,则双曲线方程为
x2-
y2
3
=1
x2-
y2
3
=1

查看答案和解析>>

科目:高中数学 来源: 题型:008

判断正误:

已知双曲线的两条渐近线方程为x+y=0与x-y=0, 两顶点间距离为2, 则这双曲线方程为x2-y2=1, 或 y2-x2=1

(  )

查看答案和解析>>

同步练习册答案