【题目】用数学归纳法证明:(n+1)+(n+2)+…+(n+n)=
(n∈N*)
【答案】证明:①n=1时,左边=2,右边=2,等式成立; ②假设n=k时,结论成立,即:(k+1)+(k+2)+…+(k+k)= ![]()
则n=k+1时,等式左边=(k+2)+(k+3)+…+(k+k+1)+(k+1+k+1)=
+3k+2= ![]()
故n=k+1时,等式成立
由①②可知:(n+1)+(n+2)+…+(n+n)=
(n∈N*)成立
【解析】根据数学归纳法的证题步骤,先证n=1时,等式成立;再假设n=k时,等式成立,再证n=k+1时等式成立.关键是注意n=k+1时等式左边与n=k时的等式左边的差,即为n=k+1时等式左边增加的项
【考点精析】关于本题考查的数学归纳法的定义,需要了解数学归纳法是证明关于正整数n的命题的一种方法才能得出正确答案.
科目:高中数学 来源: 题型:
【题目】双流中学校运动会招募了12名男志愿者和18名女志愿者,将这30名志愿者的身高编成如图所示的茎叶图(单位:
),身高在175
以上(包括175
)定义为“高个子”,身高在175
以 下(不包括175
)定义为“非高个子”.
![]()
(1)如果用分层抽样的方法从“高个子”和“非高个子”中共抽取5人,再从这5人中选2人,求至少有一人是“高个子”的概率?
(2)若从身高180
以上(包括180
)的志愿者中选出男、女各一人,求这两人身高相差5
以上的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)
某学校用简单随机抽样方法抽取了100名同学,对其日均课外阅读时间(单位:分钟)进行调查,结果如下:
t |
|
|
|
|
|
|
男同学人数 | 7 | 11 | 15 | 12 | 2 | 1 |
女同学人数 | 8 | 9 | 17 | 13 | 3 | 2 |
若将日均课外阅读时间不低于60分钟的学生称为“读书迷”.
(1)将频率视为概率,估计该校4000名学生中“读书迷”有多少人?
(2)从已抽取的8名“读书迷”中随机抽取4位同学参加读书日宣传活动.
(i)求抽取的4位同学中既有男同学又有女同学的概率;
(ii)记抽取的“读书迷”中男生人数为
,求
的分布列和数学期望
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|2x﹣1|+|2x+a|,g(x)=x+3. (Ⅰ)当a=﹣2时,求不等式f(x)<g(x)的解集;
(Ⅱ)设a>﹣1,且当
时,f(x)≤g(x),求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题p:设a,b∈R,则“a+b>4”是“a>2且b>2”的必要不充分条件;命题q:若
<0,则
,
夹角为钝角,在命题①p∧q;②¬p∨¬q;③p∨¬q;④¬p∨q中,真命题是( )
A.①③
B.①④
C.②③
D.②④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
对任意实数
恒有
,且当
时,
,又
.
(1)判断
的奇偶性;
(2)求证:
是R上的减函数;
(3)求
在区间[-3,3]上的值域;
(4)若x∈R,不等式
恒成立,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在棱长为2的正方体ABCD﹣A1B1C1D1中,E,F分别为A1B1 , CD的中点. ![]()
(1)求|
|
(2)求直线EC与AF所成角的余弦值;
(3)求二面角E﹣AF﹣B的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,设椭圆
:
的离心率为
,
分别为椭圆
的左、右顶点,
为右焦点,直线
与
的交点到
轴的距离为
,过点
作
轴的垂线
,
为
上异于点
的一点,以
为直径作圆
.
![]()
(1)求
的方程;
(2)若直线
与
的另一个交点为
,证明:直线
与圆
相切.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本题满分12分)已知函数f(x)=2cos x(sin x+cos x).
(1)求f
的值;
(2)求函数f(x)的最小正周期及单调递增区间.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com