极坐标系与直角坐标系
有相同的长度单位,以原点
为极点,以
正半轴为极轴,已知曲线
的极坐标方程为
,曲线
的参数方程是
(
为参数,
,射线
与曲线
交于极点
外的三点![]()
(Ⅰ)求证:
;
(Ⅱ)当
时,
两点在曲线
上,求
与
的值.
科目:高中数学 来源: 题型:解答题
已知抛物线
的焦点为
,点
是抛物线上的一点,且其纵坐标为4,
.
(1)求抛物线的方程;
(2)设点
是抛物线上的两点,
的角平分线与
轴垂直,求直线AB的斜率;
(3)在(2)的条件下,若直线
过点
,求弦
的长.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知
、
分别为椭圆
:
的上、下焦点,其中
也是抛物线
:
的焦点,点
是
与
在第二象限的交点,且
。![]()
(Ⅰ)求椭圆的方程;
(Ⅱ)已知点
(1,3)和圆
:
,过点
的动直线
与圆
相交于不同的两点
,在线段
取一点
,满足:
,
(
且
)。
求证:点
总在某定直线上。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
椭圆
的右焦点为
,右准线为
,离心率为
,点
在椭圆上,以
为圆心,
为半径的圆与
的两个公共点是
.![]()
(1)若
是边长为
的等边三角形,求圆的方程;
(2)若
三点在同一条直线
上,且原点到直线
的距离为
,求椭圆方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知平面上动点P(
)及两个定点A(-2,0),B(2,0),直线PA、PB的斜率分别为
、
且![]()
(I)求动点P所在曲线C的方程。
(II)设直线
与曲线C交于不同的两点M、N,当OM⊥ON时,求点O到直线
的距离。(O为坐标原点)
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
(
,
)的图象恒过定点
,椭圆
:
(
)的左,右焦点分别为
,
,直线
经过点
且与⊙
:
相切.
(1)求直线
的方程;
(2)若直线
经过点
并与椭圆
在
轴上方的交点为
,且
,求
内切圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知双曲线
的离心率为
,右准线方程为
。
(Ⅰ)求双曲线C的方程;
(Ⅱ)已知直线
与双曲线C交于不同的两点A,B,且线段AB的中点在圆
上,求实数m的值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知椭圆
的左右焦点分别为
、
,由4个点
、
、
和
组成一个高为
,面积为
的等腰梯形.
(1)求椭圆的方程;
(2)过点
的直线和椭圆交于
、
两点,求![]()
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的离心率为
,![]()
轴被抛物线
截得的线段长等于
的长半轴长.
(1)求
的方程;
(2)设
与
轴的交点为
,过坐标原点
的直线![]()
与
相交于
两点,直线
分别与
相交于
.
①证明:
为定值;
②记
的面积为
,试把
表示成
的函数,并求
的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com