精英家教网 > 高中数学 > 题目详情
已知向量
OP
=(2cosx+1,cos2x-sinx+1),
OQ
=(cosx,-1),定义f(x)=
OP
OQ

(1)求函数f(x)的单调递减区间;
(2)求函数f(x)的最大值及取得最大值时的x的取值集合.
分析:(1)利用向量的数量积,求出f(x)的表达式,然后化简为一个角的一个三角函数的形式,结合正弦函数的单调性,求出函数f(x)的单调递减区间;
(2)结合(1)利用正弦函数的有界性,求函数f(x)的最大值及取得最大值时x的集合.
解答:解:(1)f(x)=
OP
OQ
=(2cosx+1,cos2x-sinx+1)•(cosx,-1)=2cos2x+cosx-cos2x+sinx-1…(2分)
=cos+sinx…(4分)
=
2
sin(x+
π
4
)
…(6分)
令2kπ+
π
2
≤x+
π
4
≤2kπ+
2
,k∈Z

解得2kπ+
π
4
≤x≤2kπ+
4

所以,函数f(x)的单调递减区间为[2kπ+
π
4
,2kπ+
4
],k∈Z
.…(9分)
(2)函数f(x)的最大值是
2
,此时x+
π
4
=2kπ+
π
2
,即x=2kπ+
π
4

所以,函数f(x)取得最大值
2
时的x的取值集合为{x|x=2kπ+
π
4
,k∈Z}
.…(12分)
点评:本题考查平面向量的数量积,三角函数的单调性,三角函数的最值,考查学生计算能力,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在以下四个命题中,不正确的个数为(  )
(1)若
a
b
-
c
都是非零向量,则
a
 • 
b
=
a
 • 
c
a
⊥(
b
-
c
)的充要条件

(2)已知不共线的三点A、B、C和平面ABC外任意一点O,点P在平面ABC内的充要条件是存在x,y,z∈R,
OP
=x
OA
+y
OB
+z
OC
且x+y+z=1
(3)空间三个向量
a
b
c
,若
a
b
 b
c
,  则
a
c

(4)对于任意空间任意两个向量
a
, 
b
a
b
的充要条件是存在唯一的实数λ,使
a
b

查看答案和解析>>

科目:高中数学 来源: 题型:

对向量a=(a1,a2),b=(b1,b2)定义一种运算“?”:a?b=(a1,a2)?(b1,b2)=(a1b1,a2b2),已知动点P、Q分别在曲线y=sinx和y=f(x)上运动,且
OQ
=
m
?
OP
+
n
(其中为O坐标原点),若 
m
=(
1
2
,3),
n
=(
π
6
,0),则y=f(x)
的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

定义向量⊕运算:
a
b
=
c
,若
a
=(a1,a2),
b
=(b1,b2),则向量
c
=(a1b1,a2b2).已知
m
=(
1
2
,2
),
n
=(
π
6
,0
),且点P(x,y)在函数y=cos2x的图象上运动,点Q在函数y=f(x)的图象上运动,且点P和点Q满足:
OQ
=
m
OP
+
n
(其中O为坐标原点),则函数y=f(x)的最大值A及最小正周期T分别为(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在以下四个命题中,不正确的个数为(  )
(1)若
a
b
-
c
都是非零向量,则
a
 • 
b
=
a
 • 
c
a
⊥(
b
-
c
)的充要条件

(2)已知不共线的三点A、B、C和平面ABC外任意一点O,点P在平面ABC内的充要条件是存在x,y,z∈R,
OP
=x
OA
+y
OB
+z
OC
且x+y+z=1
(3)空间三个向量
a
b
c
,若
a
b
 b
c
,  则
a
c

(4)对于任意空间任意两个向量
a
, 
b
a
b
的充要条件是存在唯一的实数λ,使
a
b
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案