(本小题满分14分)
如图,四边形
为矩形,且
,
,
为
上的动点.
(1) 当
为
的中点时,求证:
;
(2) 设
,在线段
上存在这样的点E,使得二面角
的平面角大小为
. 试确定点E的位置.![]()
方法一:(1) 证明:当
为
的中点时,
,从而
为等腰直角三角形,
则
,同理可得
,∴
,于是
,…2分
又
,且
,∴
,
…………………4分
∴
,又
,∴
. …………………………6分
(也可以利用三垂线定理证明,但必需指明三垂线定理)
(还可以分别算出PE,PD,DE三条边的长度,再利用勾股定理的逆定理得证,也给满分)
(2) 如图过
作
于
,连
,则
,…7分![]()
∴
为二面角
的平面角. ……………9分
设
,则
.
…………11分![]()
于是
……………………………13分
,有
解之得
。
点
在线段BC上距B点的
处. ………………………………14分
方法二、向量方法.以
为原点,
所在直线为
轴,建立空间直角坐标系,如图. …………………………1分![]()
(1)不妨设
,则
,
从而
,………………………5分
于是
,
所以
所以
………………………6分
(2)设
,则
,
则
.……………………………………10分
易知向量
为平面
的一个法向量.设平面
的法向量为
,
则应有
即
解之得
,令
则
,
,
从而
,…………………………………………………………12分
依题意
,即
,
解之得
(舍去),
……………………………………13分
所以点
在线段BC上距B点的
处 .………………………………14分
解析
科目:高中数学 来源: 题型:
| 3 |
| π |
| 4 |
| π |
| 4 |
| π |
| 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分14分)设椭圆C1的方程为
(a>b>0),曲线C2的方程为y=
,且曲线C1与C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设A、B是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。
查看答案和解析>>
科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题
(本小题满分14分)
已知
=2,点(
)在函数
的图像上,其中
=
.
(1)证明:数列
}是等比数列;
(2)设
,求
及数列{
}的通项公式;
(3)记
,求数列{
}的前n项和
,并证明
.
查看答案和解析>>
科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题
(本小题满分14分)
某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第
天(
)的销售价格(单位:元)为
,第
天的销售量为
,已知该商品成本为每件25元.
(Ⅰ)写出销售额
关于第
天的函数关系式;
(Ⅱ)求该商品第7天的利润;
(Ⅲ)该商品第几天的利润最大?并求出最大利润.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题
(本小题满分14分)已知
的图像在点
处的切线与直线
平行.
⑴ 求
,
满足的关系式;
⑵ 若
上恒成立,求
的取值范围;
⑶ 证明:
(
)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com