精英家教网 > 高中数学 > 题目详情
20、已知点P是圆x2+y2=16上一个动点,点A是x轴上的定点,坐标是(12,0),当点P在圆上运动时,求线段PA的中点M的轨迹方程.
分析:设出点M是PA中点的坐标,利用中点坐标公式求出P的坐标,根据P在圆上,得到轨迹方程.
解答:解:设M(x,y)则P(2x-12,2y)
∵P在圆上运动
∴(2x-12)2+(2y)2=16 即(x-6)2+y2=4
∴线段PA的中点M的轨迹方程为(x-6)2+y2=4
点评:本题考查中点的坐标公式、求轨迹方程的方法:相关点法:设出动点坐标,求出相关的点的坐标,代入已知的曲线方程.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点P是圆x2+y2=1上一动点,点P在y轴上的射影为Q,设满足条件
QM
QP
(λ为非零常数)的点M的轨迹为曲线C.
(1)求曲线C的方程;
(2)若存在过点N(
1
2
,0)
的直线l与曲线C相交于A、B两点,且
OA
OB
=0(O为坐标原点),求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是圆x2+y2=1上的动点,点P在y轴上的射影为Q,设满足条件
QM
=2
QP
的点M的轨迹为曲线C.
(1)求曲线C的方程;
(2)设过点N(1,0)且斜率为k1(k1≠0)的直线l被曲线C所截得的弦的中点为A,O为坐标原点,直线OA的斜率为k2,求k12+k22的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是圆x2+y2=1上任意一点,过点P作y轴的垂线,垂足为Q,点R满足
RQ
=
3
PQ
,记点R的轨迹为曲线C.
(Ⅰ)求曲线C的方程;
(Ⅱ)设A(0,1),点M、N在曲线C上,且直线AM与直线AN的斜率之积为
2
3
,求△AMN的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点P是圆x2+y2=1上的动点,点P在y轴上的射影为Q,设满足条件数学公式的点M的轨迹为曲线C.
(1)求曲线C的方程;
(2)设过点N(1,0)且斜率为k1(k1≠0)的直线l被曲线C所截得的弦的中点为A,O为坐标原点,直线OA的斜率为k2,求k12+k22的最小值.

查看答案和解析>>

科目:高中数学 来源:2011年湖北省黄冈市高考数学交流试卷3(文科)(解析版) 题型:解答题

已知点P是圆x2+y2=1上的动点,点P在y轴上的射影为Q,设满足条件的点M的轨迹为曲线C.
(1)求曲线C的方程;
(2)设过点N(1,0)且斜率为k1(k1≠0)的直线l被曲线C所截得的弦的中点为A,O为坐标原点,直线OA的斜率为k2,求k12+k22的最小值.

查看答案和解析>>

同步练习册答案