精英家教网 > 高中数学 > 题目详情
求证:函数f(x)=-
1x
+1
在区间(0,+∞)上是单调增函数.
分析:利用单调性的定义来证明函数是一个单调函数,先设出任意两个正数变量,表明它们的大小关系,对两个变量对应的函数值做差,合并同类项,通分整理,最终形式是变化为因式的积或商的形式,这样就可以根据条件判断差和零的关系,得到结论.
解答:证明:任意0<x1<x2
f(x1)-f(x2)=-
1
x1
+1-(-
1
x2
+1)=
1
x2
-
1
x1
=
x1-x2
x1x2

∵0<x1<x2
∴x1-x2<0,x1x2>0,
x1-x2
x1x2
<0,即f(x1)<f(x2),
∴f(x)在(0,+∞)上为增函数.
点评:本题考查函数单调性的证明,考查对于代数式的整理,是一个基础题,这种题目经常考到,可以作为一个解答题目的一问出现,这种题目的证法一般只有两种,一是用定义,二是用导数.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)求证:函数f(x)=
x+3
x+1
在区间(-1,+∞)上是单调减函数;
(2)写出函数f(x)=
x+1
x+3
的单调区间;
(3)讨论函数f(x)=
x+a
x+2
在区间(-2,+∞)上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

求证:函数f(x)=
2x
-x
在区间(0,+∞)上单调递减.

查看答案和解析>>

科目:高中数学 来源: 题型:

求证:函数f(x)=x+
1x
在区间 (0,1)上是减函数,并指出f(x)在区间(-1,0)上的单调性(不必证明).

查看答案和解析>>

科目:高中数学 来源: 题型:

求证:函数f(x)=
5x-1
在(1,+∞)
上是减函数.

查看答案和解析>>

同步练习册答案