【题目】设函数
,其中
为自然对数的底数,其图象与
轴交于
,
两点,且
.
(Ⅰ)求实数
的取值范围;
(Ⅱ)证明:
(
为函数
的导函数).
【答案】(1)
(2)见解析
【解析】试题分析:(1)
当
时,
为
上的单调函数与
轴交点只有一个或零个,不满足题意;当
时,讨论
的单调性,
有极小值点,只要保证
的极小值小于零,则会满足题意.(2)注意到
为单调增函数,若能证明
且
必有
试题解析:(Ⅰ)
.
若
,则
,则函数
是单调增函数,这与题设矛盾.所以
,令
,则
.
当
时,
,
是单调减函数;
时,
,
是单调增函数;
于是当
时,
取得极小值.
因为函数
的图象与
轴交于两点
,
(x1<x2),
所以
,即
.
此时,存在
;(或寻找f(0))
存在
,
又由
在
及
上的单调性及曲线在R上不间断,可知
为所求取值范围.
(Ⅱ)因为
两式相减得
.
记
,则
,
设
,则
,所以
是单调减函数,
则有
,而
,所以
.
又
是单调增函数,且
,
所以
.
科目:高中数学 来源: 题型:
【题目】已知过抛物线
的焦点
,斜率为
的直线交抛物线于
两点,且
.
(1)求该抛物线
的方程;
(2)已知抛物线上一点
,过点
作抛物线的两条弦
和
,且
,判断直线
是否过定点?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,曲线
的参数方程为
(
,
为参数),在以
为极点,
轴的正半轴为极轴的极坐标系中,曲线
是圆心在极轴上,且经过极点的圆.已知曲线
上的点
对应的参数
,射线
与曲线
交于点
.
(Ⅰ)求曲线
的直角坐标方程;
(Ⅱ)若点
,
在曲线
上,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】图1,平行四边形
中,
,
,现将
沿
折起,得到三棱锥
(如图2),且
,点
为侧棱
的中点.
![]()
(1)求证:
平面
;
(2)求三棱锥
的体积;
(3)在
的角平分线上是否存在点
,使得
平面
?若存在,求
的长;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系
中,以
为极点,
轴正半轴为极轴建立极坐标系,直线
的极坐标方程为
(
),
为
上一点,以
为边作等边三角形
,且
、
、
三点按逆时针方向排列.
(Ⅰ)当点
在
上运动时,求点
运动轨迹的直角坐标方程;
(Ⅱ)若曲线
:
,经过伸缩变换
得到曲线
,试判断点
的轨迹与曲线
是否有交点,如果有,请求出交点的直角坐标,没有则说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设全集U=R,集合A={x|﹣1≤x<3},B={x|2x﹣4≥x﹣2}.
(1)求U(A∩B);
(2)若集合C={x|2x+a>0},满足B∪C=C,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,设椭圆的中心为原点
,长轴在
轴上,上顶点为
,左,右焦点分别为
,线段
的中点分别为
,且
是面积为4的直角三角形.
(1)求该椭圆的离心率和标准方程;
(2)过
做直线
交椭圆于
两点,使
,求直线
的方程.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为加快新能源汽车产业发展,推进节能减排,国家对消费者购买新能源汽车给予补贴,其中对纯电动乘车补贴标准如下表:
![]()
某校研究性学习小组,从汽车市场上随机选取了
辆纯电动乘用车,根据其续驶里程
(单次充电后能行驶的最大里程)作出了频率与频数的统计表:
![]()
(1)求
的值;
(2)若从这
辆纯电动乘用车中任选3辆,求选到的3辆车续驶里程都不低于180公里的概率;
(3)如果以频率作为概率,若某家庭在某汽车销售公司购买了2辆纯电动乘用车,设该家庭获得的补贴为
(单位:万元),求
的分布列和数学期望
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com