精英家教网 > 高中数学 > 题目详情
函数,满足f(x)>1的x的取值范围是   
【答案】分析:分x>0和x≤0两种情况,分别代入解析式,解不等式即可得到x的取值范围.
解答:解:①x>0时,f(x)=>1,得x>1;
②x≤0时,f(x)=2-x>1,得x<0,
综上x的取值范围是x<0或x>1.
故答案为:x<0或x>1
点评:本题考查分段函数的求值和解不等式等基础知识,考查运算求解能力,考查化归与转化思想.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)是奇函数且满足f(
3
2
-x)=f(x)
,f(-2)=-3,数列{an}满足a1=-1,且Sn=2an+n,(其中Sn为{an}的前n项和).则f(a5)+f(a6)=(  )
A、-3B、-2C、3D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)是定义在R上的奇函数,满足f(x+2)=f(x),当x∈(-2,0)时,f(x)=2x-2,则f(-3)的值等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)是定义在R上的奇函数,满足f(x+2)=f(x),当x∈(0,1)时,f(x)=2x-2,则f(log
1
2
6)
的值等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是二次函数,满足f(x+1)+f(2x-1)=-5x2-x,求函数f(x)的解析式、值域,并写出函数的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•南京模拟)函数f (x)是定义在[0,1]上的函数,满足f (x)=2f (
x
2
),且f (1)=1,在每一个区间(
1
2k
1
2k-1
](k=1,2,3,…)上,y=f (x)的图象都是斜率为同一常数m的直线的一部分,记直线x=
5
2n
,x=
1
2n-1
,x轴及函数y=f (x)的图象围成的梯形面积为an(n=1,2,3,…),则数列{an}的通项公式为
12-m
22n+1
12-m
22n+1
.(用最简形式表示)

查看答案和解析>>

同步练习册答案