精英家教网 > 高中数学 > 题目详情
已知函数f(x)=m•2x+2•3x,m∈R.
(1)当m=-9时,求满足f(x+1)>f(x)的实数x的范围;
(2)若f(x)≤(
92
)x
对任意的x∈R恒成立,求实数m的范围;
(3)若存在m使f(x)≤ax对任意的x∈R恒成立,其中a为大于1的正整数,求a的最小值.
分析:(1)将m=-9代入解析式,然后化简不等式f(x+1)>f(x),最后利用指数函数的单调性即可求出所求;
(2)将m参变量分离,然后利用换元法转化成求二次函数的最值,从而可求出m的取值范围;
(3)由(2)知,存在m∈(-∞,-1]使f(x)≤(
9
2
x对任意的x∈R恒成立,取x=1时也应该成立,从而可求出a的最小值整数解.
解答:解:(1)当m=-9时,f(x)=-9•2x+2•3x
∵f(x+1)>f(x)
∴-9•2x+1+2•3x+1>-9•2x+2•3x
即4•3x>9•2x,即(
3
2
)
x
>(
3
2
)
2

∴x>2;
(2)∵f(x)≤(
9
2
)x
对任意的x∈R恒成立,
∴m•2x+2•3x(
9
2
)
x
对任意的x∈R恒成立,
不等式两边同时除以2x(
9
4
)
x
≥2×(
3
2
)
x
+m
令t=(
3
2
)
x
>0,则t2-2t-m≥0即m≤t2-2t=(t-1)2-1对于任意正实数t恒成立
∴m≤-1;     
(3)由(2)知,存在m∈(-∞,-1]使f(x)≤(
9
2
x对任意的x∈R恒成立,
取x=1代入f(x)得m×21+2×31≤a1,化简:a≥6+2m≥4
所以a的最小整数值为4.
点评:本题主要考查了函数恒成立问题,以及指数函数的综合应用,同时考查了转化的思想和运算求解的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=m•2x+t的图象经过点A(1,1)、B(2,3)及C(n,Sn),Sn为数列{an}的前n项和,n∈N*
(1)求Sn及an
(2)若数列{cn}满足cn=6nan-n,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=m(x+
1
x
)的图象与h(x)=(x+
1
x
)+2的图象关于点A(0,1)对称.
(1)求m的值;
(2)若g(x)=f(x)+
a
4x
在(0,2]上是减函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
m
n
,其中
m
=(sinωx+cosωx,
3
cosωx)
n
=(cosωx-sinωx,2sinωx),其中ω>0,若f(x)相邻两对称轴间的距离不小于
π
2

(Ⅰ)求ω的取值范围;
(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,a=
3
,b+c=3,当ω最大时,f(A)=1,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

以下两题任选一题:(若两题都作,按第一题评分)
(一):在极坐标系中,圆ρ=2cosθ的圆心到直线θ=
π
3
(ρ∈R)的距离
3
2
3
2

(二):已知函数f(x)=m-|x-2|,m∈R,当不等式f(x+2)≥0的解集为[-2,2]时,实数m的值为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=m-|x-2|,m∈R,且f(x+2)≥0的解集为[-1,1].
(1)求m的值;
(2)若a,b,c∈R+,且
1
a
+
1
2b
+
1
3c
=m,求Z=a+2b+3c的最小值.

查看答案和解析>>

同步练习册答案