精英家教网 > 高中数学 > 题目详情
(2013•怀化三模)直线l的参数方程是
x=
2
2
t
y=
2
2
t+4
2
(其中t为参数),若原点o为极点,x正半轴为极轴,圆C的极坐标方程为ρ=2cos(θ+
π
4
),过直线上的点向圆引切线,则切线长的最小值是
2
6
2
6
分析:将圆的极坐标方程和直线l的参数方程转化为普通方程,利用点到直线的距离公式求出圆心到直线l的距离,要使切线长最小,必须直线l上的点到圆心的距离最小,此最小值即为圆心到直线的距离d,求出d,由勾股定理可求切线长的最小值.
解答:解:∵圆C的极坐标方程为ρ=2cos(θ+
π
4
),
∴ρ2=
2
ρcosθ-
2
ρsinθ,
∴x2+y2=
2
x-
2
y,即(x-
2
2
)2+(y+
2
2
)2=1,
∴圆C是以M(
2
2
,-
2
2
)为圆心,1为半径的圆…2分
化直线l的参数方程 
x=
2
2
t
y=
2
2
t+4
2
(t为参数)为普通方程:x-y+4
2
=0,…4分
∵圆心M(
2
2
,-
2
2
)到直线l的距离为d=
|5
2
|
2
=5,…6分
要使切线长最小,必须直线l上的点到圆心的距离最小,此最小值即为圆心M(
2
2
,-
2
2
)到直线的距离d,
由勾股定理求得切线长的最小值为 
d2-r2
=
52-12
=2
6

故答案为:2
6
点评:本题考查圆的极坐标方程,直线的参数方程、直线与圆的位置关系,考查运算求解能力,考查数形结合思想、化归与转化思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•怀化三模)一个空间几何体的正视图、侧视图为两个边长是1的正方形,俯视图是直角边长为1的等腰直角三角形,则这个几何体的表面积等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•怀化三模)已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
过点(
3
3
2
)
,离心率e=
1
2
,若点M(x0,y0)在椭圆C上,则点N(
x0
a
y0
b
)
称为点M的一个“椭点”,直线l交椭圆C于A、B两点,若点A、B的“椭点”分别是P、Q,且以PQ为直径的圆经过坐标原点O.
(1)求椭圆C的方程;
(2)若椭圆C的右顶点为D,上顶点为E,试探究△OAB的面积与△ODE的面积的大小关系,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•怀化三模)计算 (log29)•(log34)=
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•怀化三模)若正数a,b,c满足a+b+c=1,则
1
3a+2
+
1
3b+2
+
1
3c+2
的最小值为
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•怀化三模)每年的三月十二日是中国的植树节.林管部门在植树前,为保证树苗的质量,都会在植树前对树苗进行检测.现从甲、乙两批树苗中各抽了10株,测得髙度如下茎叶图,(单位:厘米),规定树苗髙于132厘米为“良种树苗”.

(I)根据茎叶图,比较甲、乙两批树苗的高度,哪种树苗长得整齐?
(Ⅱ)设抽测的10株甲种树苗高度平均值为
.
x
,将这10株树苗的高度依次输入如图程序框图进行运算,问输出的S为多少?.
(Ⅲ)从抽测的甲乙两种“良种树苗”中任取2株,至少1株是甲种树苗的概率.

查看答案和解析>>

同步练习册答案