精英家教网 > 高中数学 > 题目详情
已知数列{an}满足,且a1=3.
(1)计算a2,a3,a4的值,由此猜想数列{an}的通项公式,并给出证明;
(2)求证:当n≥2时,
【答案】分析:(1)由,且a1=3,分别令 n=1,2,3即可求解,进而可猜想,然后利用数学归纳法进行证明即可
(2)由(1)可得an=n+2,从而有=(n+2)n,利用二项式定理展开后即可证明
解答:解:(1)∵,且a1=3.
∴a2=4,a3=5,a4=6
猜想an=n+2
证明:①当n=1时显然成立
②假设n=k时(k≥1)时成立,即ak=k+2
则n=k+1时,ak+1==
=即n=k+1时命题成立
综上可得,an=n+2
证明:(2)∵an=n+2,n≥2
=(n+2)n=

=5nn-2nn-1=4nn+nn-1(n-2)≥4nn,即证
点评:本题主要考查了数列的递推公式在求解数列的通项综的应用及归纳法的应用,解答(2)的关键是二项展开式的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若数列{bn}满足:bn=
1
an-
1
2
(n∈N*)
,试证明数列bn-1是等比数列;
(2)求数列{anbn}的前n项和Sn
(3)数列{an-bn}是否存在最大项,如果存在求出,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
则{an}的通项公式
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求数列{an}的通项公式;
(2)证明:对于一切正整数n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k项的和S3k(用k,a表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京模拟)已知数列{an}满足an+1=an+2,且a1=1,那么它的通项公式an等于
2n-1
2n-1

查看答案和解析>>

同步练习册答案