设数列
的通项是关于x的不等式
的解集中整数的个数.
(1)求
并且证明
是等差数列;
(2)设m、k、p∈N*,m+p=2k,求证:
+
≥
;
(3)对于(2)中的命题,对一般的各项均为正数的等差数列还成立吗?如果成立,
请证明你的结论,如果不成立,请说明理由.
科目:高中数学 来源: 题型:
| 1 |
| Sm |
| 1 |
| Sp |
| 2 |
| Sk |
查看答案和解析>>
科目:高中数学 来源: 题型:
(本题满分16分)
设数列
的通项是关于x的不等式
的解集中整数的个
数。(1)求
并且证明
是等差数列;
(2)设m、k、p∈N*,m+p=2k,求证:
+
≥
;
(3)对于(2)中的命题,对一般的各项均为正数的等差数列还成立吗?如果成立,
请证明你的结论,如果不成立,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分16分)
设数列
的通项是关于x的不等式
的解集中整数的个数.
(Ⅰ)求
,并且证明
是等差数列;
(Ⅱ)设m、k、p∈N*,m+p=2k,
为
的前n项和.求证:
+
≥
;
(Ⅲ)对于(Ⅱ)中的命题,对一般的各项均为正数的等差数列还成立吗?如果成立,请证明你的结论;如果不成立,请说明理由.
查看答案和解析>>
科目:高中数学 来源:江苏省盐城中学2010届高三第三次模拟考试 题型:解答题
设数列
的通项是关于x的不等式
的解集中整数的个数.
(Ⅰ)求
,并且证明
是等差数列;
(Ⅱ)设m、k、p∈N*,m+p=2k,
为
的前n项和.求证:
+
≥
;
(Ⅲ)对于(Ⅱ)中的命题,对一般的各项均为正数的等差数列还成立吗?如果成立,请证明你的结论;如果不成立,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com