精英家教网 > 高中数学 > 题目详情

【题目】如图,圆是圆M内一个定点,P是圆上任意一点,线段PN的垂直平分线l和半径MP相交于点Q,当点P在圆M上运动时,点Q的轨迹为曲线E.

1)求曲线E的方程;

2)已知抛物线上,是否存在直线m与曲线E交于GH,使得GH中点F落在直线y2x上,并且与抛物线相切,若直线m存在,求出直线m的方程,若不存在,说明理由.

【答案】1;(2)存在,x+8y80x0

【解析】

1)根据垂直平分线性质得|QN||QP|,再根据椭圆定义求椭圆方程;

2)先根据点差法求得直线斜率,再联立直线方程与抛物线方程,利用判别式为零得直线方程,最后考虑直线斜率不存在是是否满足题意.

解:(1)由题意可知,QPN的垂直平分线上,

所以|QN||QP|,又因为|QM|+|QP|r4

所以|QM|+|QP|4|MN|

所以Q点的轨迹为椭圆,且2a4a2

由题意可知c,所以b1

∴曲线E的方程为.

2)由已知抛物线方程是y2=﹣x

若直线斜率存在,设直线与曲线E的交点坐标为Gx1y1),Hx2y2),满足曲线E的方程

两式作差可得+y1+y2)(y1y2)=0

因为GH的中点F落在直线y2x

则有y1+y22x1+x2)代入可得=﹣

直线方程可以设为y=﹣x+b与抛物线方程联立

消元可得方程y24y+4b0

直线与抛物线相切则有1616b0,所以b1

则直线的方程为x+8y80,与椭圆方程联立:

消元可得方程17y232y+1503224×17×150

所以直线x+8y80满足题意.

若直线斜率不存在时,直线x0满足题意.

所以,综上这样的直线存在,方程是x+8y80x0.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知集合.

1)求证:函数

2)某同学由(1)又发现是周期函数且是偶函数,于是他得出两个命题:①集合中的元素都是周期函数;②集合中的元素都是偶函数,请对这两个命题给出判断,如果正确,请证明;如果不正确,请举出反例;

3)设为非零常数,求的充要条件,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过直线2x+y+4=0和圆x2+y2+2x4y+1=0的交点,且面积最小的圆方程为(

A.(x+)2+(y+)2=B.(x)2+(y)2=

C.(x)2+(y+)2=D.(x+)2+(y)2=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过直线2x+y+4=0和圆x2+y2+2x4y+1=0的交点,且面积最小的圆方程为(

A.(x+)2+(y+)2=B.(x)2+(y)2=

C.(x)2+(y+)2=D.(x+)2+(y)2=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现代社会,“鼠标手”已成为常见病,一次实验中,10名实验对象进行160分钟的连续鼠标点击游戏,每位实验对象完成的游戏关卡一样,鼠标点击频率平均为180次/分钟,实验研究人员测试了实验对象使用鼠标前后的握力变化,前臂表面肌电频率()等指标.

(I)10 名实验对象实验前、后握力(单位:)测试结果如下:

实验前:346,357,358,360,362,362,364,372,373,376

实验后:313,321,322,324,330,332,334,343,350,361

完成茎叶图,并计算实验后握力平均值比实验前握力的平均值下降了多少

(Ⅱ)实验过程中测得时间(分)与10名实验对象前臂表面肌电频率()的中的位数)的九组对应数据.建立关于时间的线性回归方程;

(Ⅲ)若肌肉肌电水平显著下降,提示肌肉明显进入疲劳状态,根据(Ⅱ)中9组数据分析,使用鼠标多少分钟就该进行休息了?

参考数据:

参考公式:回归方程中斜率和截距的最小二乘估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某省确定从2021年开始,高考采用“”的模式,取消文理分科,即“3”包括语文、数学、英语,为必考科目:“1”表示从物理、历史中任选一门;“2”则是从生物、化学、地理、政治中选择两门,共计六门考试科目.某高中从高一年级2000名学生(其中女生900人)中,采用分层抽样的方法抽取名学生进行调查.

(1)已知抽取的名学生中含男生110人,求的值及抽取到的女生人数;

(2)学校计划在高二上学期开设选修中的“物理”和“历史”两个科目,为了了解学生对这两个科目的选课情况,对在(1)的条件下抽取到的名学生讲行问卷调查(假定每名学生在这两个科目中必须选择一个科目且只能选择一个科目).下表是根据调查结果得到的列联表,请将列联表补充完整,并判断是否有的把握认为选择科目与性别有关?说明你的理由;

性别

选择物理

选择历史

总计

男生

50

女生

30

总计

(3)在(2)的条件下,从抽取的选择“物理”的学生中按分层抽样抽取6人,再从这6名学生中抽取2人,对“物理”的选课意向作深入了解,求2人中至少有1名女生的概率.

参考公式:,其中.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C(a>b>0)的左.右顶点分别为AB,离心率为,点P为椭圆上一点.

(1) 求椭圆C的标准方程;

(2) 如图,过点C(01)且斜率大于1的直线l与椭圆交于MN两点,记直线AM的斜率为k1,直线BN的斜率为k2,若k12k2,求直线l斜率的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱锥中,平面,点分别为的中点.

(1)求证:平面

(2)是线段上的点,且平面.

①确定点的位置;

②求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆心在轴上的圆与直线切于点.

(1)求圆的标准方程;

(2)已知,经过原点,且斜率为正数的直线与圆交于两点.

(ⅰ)求证: 为定值;

(ⅱ)求的最大值.

查看答案和解析>>

同步练习册答案