【题目】已知椭圆
:
(
)的左焦点为
,离心率为
.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)设
为坐标原点,
为直线
上一点,过
作
的垂线交椭圆于
,
.当四边形
是平行四边形时,求四边形
的面积。
【答案】(1)
;(2)![]()
【解析】试题分析:(1)由已知得:
,
,所以
,再由
可得
,从而得椭圆的标准方程. )椭圆方程化为
.设PQ的方程为
,代入椭圆方程得:
.面积
,而
,所以只要求出
的值即可得面积.因为四边形OPTQ是平行四边形,所以
,即
.
再结合韦达定理即可得
的值.
试题解析:(1)由已知得:
,
,所以![]()
又由
,解得
,所以椭圆的标准方程为:
.
(2)椭圆方程化为
.
设T点的坐标为
,则直线TF的斜率
.
当
时,直线PQ的斜率
,直线PQ的方程是![]()
当
时,直线PQ的方程是
,也符合
的形式.
将
代入椭圆方程得:
.
其判别式
.
设
,
则
.
因为四边形OPTQ是平行四边形,所以
,即
.
所以
,解得
.
此时四边形OPTQ的面积
.
科目:高中数学 来源: 题型:
【题目】设函数
(
,
,
,
)的图象在点
处的切线的斜率为
,且函数
为偶函数.若函数
满足下列条件:①
;②对一切实数
,不等式
恒成立.
(1)求函数
的表达式;
(2)设函数
(
)的两个极值点
,
(
)恰为
的零点.当
时,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
的焦点为
,
为
上异于原点的任意一点,过点
的直线
交
于另一点
,交
轴的正半轴于点
,且有
.当点
的横坐标为3时,
为正三角形.
(1)求
的方程;
(2)延长
交抛物线于点
,过点
作抛物线的切线
,求证:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了完成对某城市的工薪阶层是否赞成调整个人所得税税率的调查,随机抽取了60人,作出了他们的月收入频率分布直方图(如图),同时得到了他们月收入情况与赞成人数统计表(如下表):
![]()
(1)试根据频率分布直方图估计这60人的平均月收入;
(2)若从月收入(单位:百元)在[65,75)的被调查者中随机选取2人进行追踪调查,求2人都不赞成的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱
中,侧面
,
均为正方形,
,点
是棱
的中点.请建立适当的坐标系,求解下列问题:
![]()
(Ⅰ)求证:异面直线
与
互相垂直;
(Ⅱ)求二面角(钝角)
的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】同时抛掷甲、乙两颗骰子.
(1)求事件A“甲的点数大于乙的点数”的概率;
(2)若以抛掷甲、乙两颗骰子点数m,n作为点P的坐标(m,n),求事件B“P落在圆
内”的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四边形
中,已知
,
,点
在
轴上,
,且对角线
.
(1)求点
的轨迹
的方程;
(2)若点
是直线
上任意一点,过点
作点
的轨迹
的两切线
,
为切点,直线
是否恒过一定点?若是,请求出这个定点的坐标;若不是,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com