精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
13
x3+ax2+bx,且f′(-1)=0.
(1)试用含a的代数式表示b;
(2)求f(x)的单调区间;
(3)令a=-1,设函数f(x)在x1、x2(x1<x2)处取得极值,记点M(x1,f(x1)),N(x2,f(x2)).证明:线段MN与曲线f(x)存在异于M,N的公共点.
分析:(1)据求导法则求出导函数,代入已知条件得关系.
(2)令导数为0得两个根,分类讨论两个根大小判断根左右两边导数的符号,得函数单调性.
(3)由(2)求出极值点,由两点式求出直线方程,与曲线方程联立判断有无其他公共点.
解答:解:解法一:(1)依题意,得
f′(x)=x2+2ax+b.
由f′(-1)=1-2a+b=0得b=2a-1.
(2)由(1)得f(x)=x3+ax2+(2a-1)x,故f′(x)=x2+2ax+2a-1=(x+1)(x+2a-1).
令f′(x)=0,则x=-1或x=1-2a.
①当a>1时,1-2a<-1.
当x变化时,f′(x)与f(x)的变化情况如下表:
精英家教网
由此得,函数f(x)的单调增区间为(-∞,1-2a)和(-1,+∞),单调减区间为(1-2a,-1).
②当a=1时,1-2a=-1.此时,f′(x)≥0恒成立,且仅在x=-1处f′(x)=0,故函数f(x)的单调增区间为R.
③当a<1时,1-2a>-1,同理可得函数f(x)的单调增区间为(-∞,-1)和(1-2a,+∞),单调减区间为(-1,1-2a).
综上所述:当a>1时,函数f(x)的单调增区间为(-∞,1-2a)和(-1,+∞),单调减区间为(1-2a,-1);
当a=1时,函数f(x)的单调增区间为R;
当a<1时,函数f(x)的单调增区间为(-∞,-1)和(1-2a,+∞),单调减区间为(-1,1-2a).
(3)当a=-1时,得f(x)=
1
3
x3-x2-3x.
由f′(x)=x2-2x-3=0,得x1=-1,x2=3.
由(2)得f(x)的单调增区间为(-∞,-1)和(3,+∞),单调减区间为(-1,3),
所以函数f(x)在x1=-1,x2=3处取得极值.故M(-1,
5
3
),N(3,-9).
所以直线MN的方程为y=-
8
3
x-1.
y=
1
3
x3-x2-3x
y=-
8
3
x-1
得x3-3x2-x+3=0.
令F(x)=x3-3x2-x+3.
易得F(0)=3>0,F(2)=-3<0,而F(x)的图象在(0,2)内是一条连续不断的曲线,
故F(x)在(0,2)内存在零点x0,这表明线段MN与曲线f(x)有异于M,N的公共点.
解法二:(1)同解法一.
(2)同解法一.
(3)当a=-1时,得f(x)=
1
3
x3-x2-3x.
由f′(x)=x2-2x-3=0,得x1=-1,x2=3.
由(2)得f(x)的单调增区间为(-∞,-1)和(3,+∞),单调减区间为(-1,3),所以函数f(x)在x1=-1,x2=3处取得极值,
故M(-1,
5
3
),N(3,-9).
所以直线MN的方程为y=-
8
3
x-1.
由x3-3x2-x+3=0.
解得x1=-1,x2=1,x3=3.
x1=-1
y1=
5
3
x2=1
y2=-
11
3
x3=3
y3=-9

所以线段MN与曲线F(x)有异于M,N的公共点(1,-
11
3
).
点评:本小题主要考查函数、导数等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想、数形结合思想、化归与转化思想、分类与整合思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
|x|
,g(x)=1+
x+|x|
2
,若f(x)>g(x),则实数x的取值范围是(  )
A、(-∞,-1)∪(0,1)
B、(-∞,-1)∪(0,
-1+
5
2
)
C、(-1,0)∪(
-1+
5
2
,+∞)
D、(-1,0)∪(0,
-1+
5
2
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1,x∈Q
0,x∉Q
,则f[f(π)]=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1-x
ax
+lnx(a>0)

(1)若函数f(x)在[1,+∞)上为增函数,求实数a的取值范围;
(2)当a=1时,求f(x)在[
1
2
,2
]上的最大值和最小值;
(3)当a=1时,求证对任意大于1的正整数n,lnn>
1
2
+
1
3
+
1
4
+
+
1
n
恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1+cos2x-2sin2(x-
π
6
),其中x∈R,则下列结论中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1+logax(a>0,a≠1),满足f(9)=3,则f-1(log92)的值是(  )

查看答案和解析>>

同步练习册答案