ÒÑÖªÊýÁÐ{an}µÄͨÏʽΪan=£¨2n-1£©•2n£¬ÎÒÃÇÓôíλÏà¼õ·¨ÇóÆäǰnÏîºÍSn£ºÓÉSn=1¡Á2+3¡Á22+5¡Á23+¡­£¨2n-1£©•2nµÃ2Sn=1¡Á22+3¡Á23+5¡Á24+¡­£¨2n-1£©•2n+1£¬Á½Ê½Ïî¼õµÃ£º-Sn=2+2¡Á22+2¡Á23+¡­+2¡Á2n-£¨2n-1£©•2n+1£¬ÇóµÃSn=£¨2n-3£©•2n+1+6£®Àà±ÈÍÆ¹ãÒÔÉÏ·½·¨£¬ÈôÊýÁÐ{bn}µÄͨÏʽΪbn=n2•2n£¬
ÔòÆäǰnÏîºÍTn=______£®
Tn=1¡Á2+4¡Á22+9¡Á23+¡­n2•2n
¡à2Tn=1¡Á22+4¡Á23+9¡Á24+¡­n2•2n+1
¡à-Tn=1¡Á2+3¡Á22+5¡Á23+¡­£¨2n-1£©2n-n2•2n+1
¼´Tn=-Sn+n2•2n+1=£¨n2-2n+3£©•2n+1-6
¹Ê´ð°¸Îª£º£¨n2-2n+3£©•2n+1-6
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}µÄͨÏîΪan=2n-1£¬SnΪÊýÁÐ{an}µÄǰnÏîºÍ£¬Áîbn=
1
Sn+n
£¬ÔòÊýÁÐ{bn}µÄǰnÏîºÍµÄȡֵ·¶Î§Îª£¨¡¡¡¡£©
A¡¢[
1
2
£¬1)
B¡¢(
1
2
£¬1)
C¡¢[
1
2
£¬
3
4
)
D¡¢[
2
3
£¬1)

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}µÄͨÏʽÊÇan=
an
bn+1
£¬ÆäÖÐa¡¢b¾ùΪÕý³£Êý£¬ÄÇôÊýÁÐ{an}µÄµ¥µ÷ÐÔΪ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2003•¶«³ÇÇø¶þÄ££©ÒÑÖªÊýÁÐ{an}µÄͨÏʽÊÇ an=
na
(n+1)b
£¬ÆäÖÐa¡¢b¾ùΪÕý³£Êý£¬ÄÇô anÓë an+1µÄ´óС¹ØÏµÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}µÄͨÏʽΪan=2n-5£¬Ôò|a1|+|a2|+¡­+|a10|=£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}µÄͨÏʽΪan=
1
n+1
+
n
ÇóËüµÄǰnÏîµÄºÍ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸