精英家教网 > 高中数学 > 题目详情
已知函数f(x)=4x3+3tx2-6t2x+t-1,x∈R,其中t∈R.
(Ⅰ)当t=1时,求曲线y=f(x)在点(0,f(0))处的切线方程;
(Ⅱ)当t≠0时,求f(x)的单调区间;
(Ⅲ)证明:对任意的t∈(0,+∞),f(x)在区间(0,1)内均存在零点.
分析:(I)当t=1时,求出函数f(x),利用导数的几何意义求出x=0处的切线的斜率,利用点斜式求出切线方程;
(II)根据f'(0)=0,解得x=-t或x=
t
2
,讨论t的正负,在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0求出单调区间即可;
(III)根据函数的单调性分两种情况讨论,当
t
2
≥1与当0<
t
2
<1时,研究函数的单调性,然后根据区间端点的符号进行判定对任意t∈(0,2),f(x)在区间(0,1)内均存在零点从而得到结论.
解答:解:(I)当t=1时,f(x)=4x3+3x2-6x,f(0)=0
f'(x)=12x2+6x-6,f'(0)=-6,所以曲线y=f(x)在点(0,f(0))处的切线方程为y=-6x.
(II)解:f'(x)=12x2+6tx-6t2,f'(0)=0,解得x=-t或x=
t
2

∵t≠0,以下分两种情况讨论:
(1)若t<0,则
t
2
<-t,∴f(x)的单调增区间是(-∞,
t
2
),(-t,+∞);f(x)的单调减区间是(
t
2
,-t)
(2)若t>0,则
t
2
>-t,∴f(x)的单调增区间是(-∞,-t),(
t
2
,+∞);f(x)的单调减区间是(-t,
t
2

(III)证明:由(II)可知,当t>0时,f(x)在(0,
t
2
)内单调递减,在(
t
2
,+∞)内单调递增,以下分两种情况讨论:
(1)当
t
2
≥1,即t≥2时,f(x)在(0,1)内单调递减.
f(0)=t-1>0,f(1)=-6t2+4t+3≤-13<0
所以对于任意t∈[2,+∞),f(x)在区间(0,1)内均存在零点.
(2)当0<
t
2
<1,即0<t<2时,f(x)在(0,
t
2
)内单调递减,在(
t
2
,1)内单调递增
若t∈(0,1],f(
t
2
)=-
7
4
t3
+t-1≤-
7
4
t3
<0,
f(1)=)=-6t2+4t+3≥-2t+3>0
所以f(x)在(
t
2
,1)内存在零点.
若t∈(1,2),f(
t
2
)=-
7
4
t3
+t-1<-
7
4
t3
+1<0,
f(0)=t-1>0∴f(x)在(0,
t
2
)内存在零点.
所以,对任意t∈(0,2),f(x)在区间(0,1)内均存在零点.
综上,对于任意t∈(0,+∞),f(x)在区间(0,1)内均存在零点.
点评:本题主要考查了导数的几何意义,利用导数研究函数的单调性、曲线的切线方程、函数零点、解不等式等基础知识,考查了计算能力和分类讨论的思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=-
4+
1
x2
,数列{an},点Pn(an,-
1
an+1
)在曲线y=f(x)上(n∈N+),且a1=1,an>0.
( I)求数列{an}的通项公式;
( II)数列{bn}的前n项和为Tn且满足bn=an2an+12,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-
4-x2
在区间M上的反函数是其本身,则M可以是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=4+ax-1(a>0且a≠1)的图象恒过定点P,则P点的坐标是
(1,5)
(1,5)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
4-x
的定义域为A,B={x|2x+3≥1}.
(1)求A∩B;
(2)设全集U=R,求?U(A∩B);
(3)若Q={x|2m-1≤x≤m+1},P=A∩B,Q⊆P,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
(4-
a
2
)x+4,  x≤6
ax-5,     x>6
(a>0,a≠1),数列{an}满足an=f(n)(n∈N*),且{an}是单调递增数列,则实数a的取值范围(  )

查看答案和解析>>

同步练习册答案