精英家教网 > 高中数学 > 题目详情
设a,b是关于x的一元二次方程x2-2mx+m+6=0的两个实根,则(a-1)2+(b-1)2的最小值是(  )
分析:根据根与系数的关系利用参数m表示出函数的解析式,根据判别式大于等于0,确定参数m的取值范围,再结合二次函数的图象与性质求出最小值即可.
解答:解:∵方程x2-2mx+m+6=0的两个根为a,b
a+b=2m
ab =m+6
,且△=4(m2-m-6)≥0,
∴y=(a-1)2+(b-1)2=(a+b)2-2ab-2(a+b)+2=4m2-6m-10=4(m-
3
4
)
2
-
49
4

且m≥3或m≤-2.
由二次函数的性质知,当m=3时,函数y=4m2-6m-10的取得最小值,最小值为8.
即函数y=(a-1)2+(b-1)2的最小值是8.
故选C.
点评:本题考查的重点是二次函数的最值,考查二次方程根与系数的关系,解题的关键是根据根与系数的关系利用参数m表示出函数的解析式,易错点是忽视参数的范围.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设x2+2ax+b2=0是关于x的一元二次方程.
(1)若a是从0,1,2,3四个数个中任取的一个数,b是从0,1,2三个数中任取的一个数,求方程有实根的概率;
(2)若a是从区间[0,3]上任取一个数,b是从区间[0,2]上任取一个数,求方程有实根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

设关于x的一元二次方程ax2+bx+1=0
(Ⅰ)设a和b分别是先后抛掷一枚骰子得到的点数,求上述方程没有实根的概率;
(Ⅱ)若a是从区间(0,3)内任取的一个数,b=2,求上述方程没有实根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•闵行区一模)设x1、x2是关于x的方程x2+mx+m2-m=0的两个不相等的实数根,那么过两点A(x1x12),B(x2x22)的直线与圆(x-1)2+y2=1的位置关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•闵行区一模)设x1、x2是关于x的方程x2+mx+
1+m2
=0
的两个不相等的实数根,那么过两点A(x1
x
2
1
)
B(x2
x
2
2
)
的直线与圆x2+y2=1的位置关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•黄浦区一模)已知函数y=
1+bx
ax+1
(a>0,x≠-
1
a
)
的图象关于直线y=x对称.
(1)求实数b的值;
(2)设A、B是函数图象上两个不同的定点,记向量
e1
=
AB
e2
=(1,0)
,试证明对于函数图象所在的平面里任一向量
c
,都存在唯一的实数λ1、λ2,使得
c
=λ1
e1
+λ2
e2
成立.

查看答案和解析>>

同步练习册答案