精英家教网 > 高中数学 > 题目详情

在四棱锥中,,且DB平分,E为PC的中点,, PD=3,(1)证明   (2)证明
(3)求四棱锥的体积。

解:(1)证明:设,连结EH,在中,因为AD=CD,且DB平分,所以H为AC的中点,又由题设知E为PC的中点,故,
,
所以
(2)证明:因为
所以
由(1)知,,

(3)四棱锥的体积为2

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

18、如图,在四棱锥P-ABCD中,侧面PAD是正三角形,且与底面ABCD垂直,底面ABCD是边长为2的菱形,∠BAD=60°,N是PB中点,过A、N、D三点的平面交PC于M.
(1)求证:DP∥平面ANC;
(2)求证:M是PC中点;
(3)求证:平面PBC⊥平面ADMN.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥P-ABCD中,底面ABCD是矩形,侧面PAD是正三角形且与底面ABCD垂直,E是AB的中点,PC与平面ABCD所成角为30°.
(1)求二面角P-CE-D的大小;
(2)当AD为多长时,点D到平面PCE的距离为2.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知:如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AB=1,BC=2.
(Ⅰ)求证:平面PDC⊥平面PAD;
(Ⅱ)若E是PD的中点,求异面直线AE与PC所成角的余弦值;
(Ⅲ)点G在线段BC上,且BG=
3
,求点D到平面PAG的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•蓟县二模)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,PA=AB=2,∠BAD=60°.
(Ⅰ)求证:直线BD⊥平面PAC;
(Ⅱ)求直线PB与平面PAD所成角的正切值;
(Ⅲ)已知M在线段PC上,且BM=DM=2,CM=3,求二面角B-MC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山东省高三下学期模拟预测理科数学试卷(解析版) 题型:解答题

在四棱锥中,平面,底面为矩形,.

(Ⅰ)当时,求证:

(Ⅱ)若边上有且只有一个点,使得,求此时二面角的余弦值.

【解析】第一位女利用线面垂直的判定定理和性质定理得到。当a=1时,底面ABCD为正方形,

又因为,………………2分

,得证。

第二问,建立空间直角坐标系,则B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分

设BQ=m,则Q(1,m,0)(0《m《a》

要使,只要

所以,即………6分

由此可知时,存在点Q使得

当且仅当m=a-m,即m=a/2时,BC边上有且只有一个点Q,使得

由此知道a=2,  设平面POQ的法向量为

,所以    平面PAD的法向量

的大小与二面角A-PD-Q的大小相等所以

因此二面角A-PD-Q的余弦值为

解:(Ⅰ)当时,底面ABCD为正方形,

又因为,………………3分

(Ⅱ) 因为AB,AD,AP两两垂直,分别以它们所在直线为X轴、Y轴、Z轴建立坐标系,如图所示,

则B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分

设BQ=m,则Q(1,m,0)(0《m《a》要使,只要

所以,即………6分

由此可知时,存在点Q使得

当且仅当m=a-m,即m=a/2时,BC边上有且只有一个点Q,使得由此知道a=2,

设平面POQ的法向量为

,所以    平面PAD的法向量

的大小与二面角A-PD-Q的大小相等所以

因此二面角A-PD-Q的余弦值为

 

查看答案和解析>>

同步练习册答案