精英家教网 > 高中数学 > 题目详情

【题目】已知函数,其中为常数.

1)当时,解不等式

2)已知是以2为周期的偶函数,且当时,有.,且,求函数的反函数;

3)若在上存在个不同的点,使得,求实数的取值范围.

【答案】(1);(2);(3).

【解析】

1)直接利用绝对值不等式的解法及应用求出结果.

2)利用函数的周期和函数的关系式的应用求出函数的反函数.

3)利用绝对值不等式的应用和函数的性质的应用,利用分类讨论思想的应用求出结果.

解:(1)解不等式

时,,所以

时,,所以

综上,该不等式的解集为

2)当时,

因为是以2为周期的偶函数,

所以

,且,得

所以当时,

所以当时,

所以函数的反函数为

3)①当时,在,是上的增函数,所以

所以,得

②当时,在,是上的增函数,所以

所以,得

③当时,上不单调,所以

上,.

,不满足.

综上,的取值范围为.

③当时,则,所以上单调递增,在上单调递减,于是

,解得,不符合题意;

④当时,分别在上单调递增,在上单调递减,

,解得,不符合题意.

综上,所求实数的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为推进“千村百镇计划”,月某新能源公司开展“电动莆田 绿色出行”活动,首批投放型新能源车到莆田多个村镇,供当地村民免费试用三个月.试用到期后,为了解男女试用者对型新能源车性能的评价情况,该公司要求每位试用者填写一份性能综合评分表(满分为分).最后该公司共收回份评分表,现从中随机抽取份(其中男、女的评分表各份)作为样本,经统计得到如下茎叶图:

1)求个样本数据的中位数

2)已知个样本数据的平均数,记的最大值为.该公司规定样本中试用者的“认定类型”:评分不小于的为“满意型”,评分小于的为“需改进型”.

请根据个样本数据,完成下面列联表:

根据列联表判断能否有的把握认为“认定类型”与性别有关?

②为做好车辆改进工作,公司先从样本“需改进型”的试用者按性别用分层抽样的方法,从中抽取8人进行回访,根据回访意见改进车辆后,再从这8人中随机抽取3人进行二次试用,记这3人中男性人数为,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱锥中,底面是边长为的正三角形,点在底面上的射影恰是的中点,侧棱和底面成角.

1)若为侧棱上一点,当为何值时,

2)求二面角的余弦值大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的函数满足,且对任意的都有其中的导数,则下列一定判断正确的是( )

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现定义:设是非零实常数,若对于任意的,都有,则称函数为“关于的偶型函数”

1)请以三角函数为例,写出一个“关于2的偶型函数”的解析式,并给予证明

2)设定义域为的“关于的偶型函数”在区间上单调递增,求证在区间上单调递减

3)设定义域为的“关于的偶型函数”是奇函数,若,请猜测的值,并用数学归纳法证明你的结论

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论f(x)的单调性;

(2)恰有两个极值点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】年底,我国发明专利申请量已经连续年位居世界首位,下表是我国年至年发明专利申请量以及相关数据.

注:年份代码分别表示.

1)可以看出申请量每年都在增加,请问这几年中哪一年的增长率达到最高,最高是多少?

2)建立关于的回归直线方程(精确到),并预测我国发明专利申请量突破万件的年份.

参考公式:回归直线的斜率和截距的最小二乘法估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是矩形,底面.

1)当为何值时,平面?证明你的结论;

2)若在边上至少存在一点,使,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,且AB1BC2 ABC=60°PA⊥平面ABCDAEPCE

下列四个结论:①ABAC;②AB⊥平面PAC;③PC⊥平面ABE;④BEPC.正确的个数是( )

A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案