【题目】已知函数
,其中
为常数.
(1)当
时,解不等式
;
(2)已知
是以2为周期的偶函数,且当
时,有
.若
,且
,求函数![]()
的反函数;
(3)若在
上存在
个不同的点
,
,使得
,求实数
的取值范围.
【答案】(1)
;(2)
;(3)
.
【解析】
(1)直接利用绝对值不等式的解法及应用求出结果.
(2)利用函数的周期和函数的关系式的应用求出函数的反函数.
(3)利用绝对值不等式的应用和函数的性质的应用,利用分类讨论思想的应用求出结果.
解:(1)解不等式![]()
当
时,
,所以![]()
当
时,
,所以
,
综上,该不等式的解集为![]()
(2)当
时,
,
因为
是以2为周期的偶函数,
所以
,
由
,且
,得
,
所以当
时,![]()
所以当
时,
,
所以函数
的反函数为
![]()
(3)①当
时,在
上
,是
上的增函数,所以
![]()
所以
,得
;
②当
时,在
上
,是
上的增函数,所以
![]()
所以
,得
;
③当
时,
在
上不单调,所以
![]()
,
,
在
上,
.
,不满足.
综上,
的取值范围为
.
③当
时,则
,所以
在
上单调递增,在
上单调递减,于是![]()
![]()
令
,解得
或
,不符合题意;
④当
时,
分别在
、
上单调递增,在
上单调递减,
![]()
![]()
![]()
令
,解得
或
,不符合题意.
综上,所求实数
的取值范围为
.
科目:高中数学 来源: 题型:
【题目】为推进“千村百镇计划”,
年
月某新能源公司开展“电动莆田 绿色出行”活动,首批投放
台
型新能源车到莆田多个村镇,供当地村民免费试用三个月.试用到期后,为了解男女试用者对
型新能源车性能的评价情况,该公司要求每位试用者填写一份性能综合评分表(满分为
分).最后该公司共收回
份评分表,现从中随机抽取
份(其中男、女的评分表各
份)作为样本,经统计得到如下茎叶图:
![]()
(1)求
个样本数据的中位数
;
(2)已知
个样本数据的平均数
,记
与
的最大值为
.该公司规定样本中试用者的“认定类型”:评分不小于
的为“满意型”,评分小于
的为“需改进型”.
①请根据
个样本数据,完成下面
列联表:
![]()
根据
列联表判断能否有
的把握认为“认定类型”与性别有关?
②为做好车辆改进工作,公司先从样本“需改进型”的试用者按性别用分层抽样的方法,从中抽取8人进行回访,根据回访意见改进车辆后,再从这8人中随机抽取3人进行二次试用,记这3人中男性人数为
,求
的分布列及数学期望.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在三棱锥
中,底面是边长为
的正三角形,点
在底面
上的射影
恰是
的中点,侧棱
和底面成
角.
![]()
(1)若
为侧棱
上一点,当
为何值时,
;
(2)求二面角
的余弦值大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现定义:设
是非零实常数,若对于任意的
,都有
,则称函数
为“关于的
偶型函数”
(1)请以三角函数为例,写出一个“关于2的偶型函数”的解析式,并给予证明
(2)设定义域为的“关于的
偶型函数”在区间
上单调递增,求证在区间
上单调递减
(3)设定义域为
的“关于
的偶型函数”
是奇函数,若
,请猜测
的值,并用数学归纳法证明你的结论
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】至
年底,我国发明专利申请量已经连续
年位居世界首位,下表是我国
年至
年发明专利申请量以及相关数据.
![]()
注:年份代码
~
分别表示
~
.
(1)可以看出申请量每年都在增加,请问这几年中哪一年的增长率达到最高,最高是多少?
(2)建立
关于
的回归直线方程(精确到
),并预测我国发明专利申请量突破
万件的年份.
参考公式:回归直线的斜率和截距的最小二乘法估计分别为
,![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,且AB=1,BC=2, ∠ABC=60°,PA⊥平面ABCD,AE⊥PC于E,
![]()
下列四个结论:①AB⊥AC;②AB⊥平面PAC;③PC⊥平面ABE;④BE⊥PC.正确的个数是( )
A.1B.2C.3D.4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com