精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1
2
(sinx+cosx)
,则f(x)的值域是
[-
2
2
2
2
]
[-
2
2
2
2
]
分析:先根据辅助角公式对函数进行化简整理,再结合正弦函数的取值范围即可得到结论.
解答:解:因为:f(x)=
1
2
(sinx+cosx)
=
2
2
2
2
sinx+
2
2
cosx)=
2
2
sin(x+
π
4
).
∵-1≤sin(x+
π
4
)≤1;
∴-
2
2
≤f(x)≤
2
2

故答案为:[-
2
2
2
2
].
点评:本题主要考查辅助角公式的应用.解决问题的关键在于得到函数f(x)=
2
2
sin(x+
π
4
).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
|x|
,g(x)=1+
x+|x|
2
,若f(x)>g(x),则实数x的取值范围是(  )
A、(-∞,-1)∪(0,1)
B、(-∞,-1)∪(0,
-1+
5
2
)
C、(-1,0)∪(
-1+
5
2
,+∞)
D、(-1,0)∪(0,
-1+
5
2
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1,x∈Q
0,x∉Q
,则f[f(π)]=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1-x
ax
+lnx(a>0)

(1)若函数f(x)在[1,+∞)上为增函数,求实数a的取值范围;
(2)当a=1时,求f(x)在[
1
2
,2
]上的最大值和最小值;
(3)当a=1时,求证对任意大于1的正整数n,lnn>
1
2
+
1
3
+
1
4
+
+
1
n
恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1+cos2x-2sin2(x-
π
6
),其中x∈R,则下列结论中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1+logax(a>0,a≠1),满足f(9)=3,则f-1(log92)的值是(  )

查看答案和解析>>

同步练习册答案