精英家教网 > 高中数学 > 题目详情

已知椭圆的中心为坐标原点,焦点在轴上,斜率为且过椭圆右焦点的直线交椭圆于两点,共线.设为椭圆上任意一点,且,证明为定值.

为定值,定值为


解析:

由题意可知,所以椭圆可化为

,由已知得

在椭圆上,

.  ①

由(Ⅰ)知

,代入①得

为定值,定值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆的中心为坐标原点O,焦点在x轴上,斜率为1且过椭圆右焦点F的直线交椭圆于A、B两点,
OA
+
OB
a
=(3,-1)共线.
(Ⅰ)求椭圆的离心率;
(Ⅱ)设M为椭圆上任意一点,且
OM
OA
OB
(λ,μ∈R)
,证明λ22为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心为坐标原点O,椭圆短半轴长为1,动点M(2,t)(t>0)在直线x=
a2c
(a为长半轴,c为半焦距)上.
(1)求椭圆的标准方程
(2)求以OM为直径且被直线3x-4y-5=0截得的弦长为2的圆的方程;
(3)设F是椭圆的右焦点,过点F作OM的垂线与以OM为直径的圆交于点N,求证:线段ON的长为定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心为坐标原点,斜率为1且过椭圆右焦点F(2,0)的直线交椭圆于A,B两点,
OA
+
OB
a
=(3,-1)
共线,则该椭圆的长半轴长为
6
6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心为坐标原点O,椭圆短半轴长为1,动点M(2,t)(t>0)在直线x=
a2c
(a为长半轴,c为半焦距)上.
(1)求椭圆的标准方程;
(2)求以OM为直径且被直线3x-4y-5=0截得的弦长为2的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心为坐标原点O,焦点在x轴上,斜率为1且过椭圆右焦点F的直线交椭圆于A、B两点,
OA
+
OB
a
=(3,-1)
共线,则该椭圆的离心率为(  )
A、
5
3
B、
3
2
C、
6
3
D、
2
2
3

查看答案和解析>>

同步练习册答案